Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify. Assume all variables are positive.\newlineu13u13u^{\frac{1}{3}} \cdot u^{\frac{1}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______

Full solution

Q. Simplify. Assume all variables are positive.\newlineu13u13u^{\frac{1}{3}} \cdot u^{\frac{1}{3}}\newlineWrite your answer in the form AA or AB\frac{A}{B}, where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.\newline______
  1. Identify Expression: Identify the expression to be simplified.\newlineWe have the expression u13×u13u^{\frac{1}{3}} \times u^{\frac{1}{3}}, which involves multiplying two powers of the same base uu.
  2. Apply Product Rule: Apply the product rule for exponents.\newlineThe product rule states that when multiplying two powers with the same base, you add the exponents: am×an=a(m+n)a^m \times a^n = a^{(m+n)}.\newlineSo, u13×u13=u(13+13)u^{\frac{1}{3}} \times u^{\frac{1}{3}} = u^{(\frac{1}{3} + \frac{1}{3})}.
  3. Perform Exponent Addition: Perform the addition of the exponents.\newlineAdd the exponents 13\frac{1}{3} and 13\frac{1}{3}.\newline13+13=23\frac{1}{3} + \frac{1}{3} = \frac{2}{3}.\newlineSo, u13u13=u23u^{\frac{1}{3}} * u^{\frac{1}{3}} = u^{\frac{2}{3}}.
  4. Write Final Expression: Write the final simplified expression.\newlineThe expression u13×u13u^{\frac{1}{3}} \times u^{\frac{1}{3}} simplifies to u23u^{\frac{2}{3}}.

More problems from Simplify expressions involving rational exponents