Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplify and find the differentiation. (7) 
y=sqrt((1-sin x)/(1+sin x))

Simplify and find the differentiation. y=1sinx1+sinx y=\sqrt{\frac{1-\sin x}{1+\sin x}}

Full solution

Q. Simplify and find the differentiation. y=1sinx1+sinx y=\sqrt{\frac{1-\sin x}{1+\sin x}}
  1. Rewrite Function: Rewrite the function in a form that is easier to differentiate.\newlineWe have y=1sinx1+sinxy = \sqrt{\frac{1-\sin x}{1+\sin x}}. To differentiate this, it's helpful to rewrite the square root as a power of 12\frac{1}{2}.\newliney=(1sinx1+sinx)12y = \left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{2}}
  2. Apply Chain Rule: Apply the chain rule to differentiate the function.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlineLet u=1sinx1+sinxu = \frac{1-\sin x}{1+\sin x}, then y=u12y = u^{\frac{1}{2}}.\newlineWe need to find dydu\frac{dy}{du} and dudx\frac{du}{dx} and then multiply them together to get dydx\frac{dy}{dx}.
  3. Differentiate yy with uu: Differentiate yy with respect to uu. Using the power rule, the derivative of u12u^{\frac{1}{2}} with respect to uu is 12u12\frac{1}{2}u^{-\frac{1}{2}}. dydu=12(1sinx1+sinx)12\frac{dy}{du} = \frac{1}{2}\left(\frac{1-\sin x}{1+\sin x}\right)^{-\frac{1}{2}}
  4. Differentiate uu with xx: Differentiate uu with respect to xx.
    u=1sinx1+sinxu = \frac{1-\sin x}{1+\sin x}
    To differentiate this quotient, we use the quotient rule: vuuvv2\frac{v' \cdot u - u' \cdot v}{v^2}, where u=1sinxu = 1 - \sin x and v=1+sinxv = 1 + \sin x.
    dudx=cosx(1+sinx)(cosx)(1sinx)(1+sinx)2\frac{du}{dx} = \frac{\cos x \cdot (1 + \sin x) - (-\cos x) \cdot (1 - \sin x)}{(1 + \sin x)^2}
    Simplify the numerator:
    dudx=cosx+sinxcosx+cosxsinxcosx(1+sinx)2\frac{du}{dx} = \frac{\cos x + \sin x \cdot \cos x + \cos x - \sin x \cdot \cos x}{(1 + \sin x)^2}
    xx00
  5. Multiply for dydx\frac{dy}{dx}: Multiply dydu\frac{dy}{du} by dudx\frac{du}{dx} to get dydx\frac{dy}{dx}.
    dydx=dydu×dudx\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}
    dydx=(12)(1sinx1+sinx)1/2×(2cosx(1+sinx)2)\frac{dy}{dx} = \left(\frac{1}{2}\right)\left(\frac{1-\sin x}{1+\sin x}\right)^{-1/2} \times \left(\frac{2 \cdot \cos x}{(1 + \sin x)^2}\right)
    Simplify the expression:
    dydx=cosx(1+sinx)3/2\frac{dy}{dx} = \frac{\cos x}{(1+\sin x)^{3/2}}

More problems from Roots of rational numbers