Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
((6x^((3)/(4))y^(-2))/(4x^((-1)/(4))y^(-3)))^(-1)*((2x^(3)y)/(2xy^((1)/(2))))^(2)

Simplify (6x34y24x14y3)1(2x3y2xy12)2 \left(\frac{6 x^{\frac{3}{4}} y^{-2}}{4 x^{\frac{-1}{4}} y^{-3}}\right)^{-1} \cdot\left(\frac{2 x^{3} y}{2 x y^{\frac{1}{2}}}\right)^{2}

Full solution

Q. Simplify (6x34y24x14y3)1(2x3y2xy12)2 \left(\frac{6 x^{\frac{3}{4}} y^{-2}}{4 x^{\frac{-1}{4}} y^{-3}}\right)^{-1} \cdot\left(\frac{2 x^{3} y}{2 x y^{\frac{1}{2}}}\right)^{2}
  1. Rewrite Expression: Rewrite the expression to make it clearer.\newlineWe have the expression: ((6x3/4y2)/(4x1/4y3))1×((2x3y)/(2xy1/2))2((6x^{3/4}y^{-2})/(4x^{-1/4}y^{-3}))^{-1} \times ((2x^3y)/(2xy^{1/2}))^2\newlineFirst, we will simplify each part of the expression separately before combining them.
  2. Simplify First Part: Simplify the first part of the expression.\newlineWe have: ((6x3/4y2)/(4x1/4y3))1((6x^{3/4}y^{-2})/(4x^{-1/4}y^{-3}))^{-1}\newlineTo simplify, we will first deal with the exponents inside the parentheses before applying the outer exponent of 1-1.
  3. Combine Exponents: Combine the exponents of xx and yy inside the parentheses.\newlineWe have: (64)(x34x14)(y2y3)(\frac{6}{4}) \cdot (x^{\frac{3}{4}} \cdot x^{\frac{1}{4}}) \cdot (y^{-2} \cdot y^{3})\newlineSimplify the coefficients: (64)=32(\frac{6}{4}) = \frac{3}{2}\newlineCombine the exponents of xx: x34+14=x44=x1=xx^{\frac{3}{4} + \frac{1}{4}} = x^{\frac{4}{4}} = x^1 = x\newlineCombine the exponents of yy: y2+3=y1=yy^{-2 + 3} = y^1 = y\newlineNow we have: (32)xy(\frac{3}{2}) \cdot x \cdot y
  4. Apply Outer Exponent: Apply the outer exponent of 1-1 to the simplified expression.\newlineWe have: ((3/2)xy)1((3/2) \cdot x \cdot y)^{-1}\newlineTaking the reciprocal of the expression: (2/3)x1y1(2/3) \cdot x^{-1} \cdot y^{-1}
  5. Simplify Second Part: Simplify the second part of the expression.\newlineWe have: ((2x3y)/(2xy1/2))2((2x^3y)/(2xy^{1/2}))^2\newlineFirst, simplify the expression inside the parentheses.\newline(2/2)(x3/x)(y/y1/2)(2/2) \cdot (x^3/x) \cdot (y/y^{1/2})\newlineThe coefficients (2/2)(2/2) cancel out to 11.\newlineCombine the exponents of xx: x31=x2x^{3-1} = x^2\newlineCombine the exponents of yy: y11/2=y1/2y^{1-1/2} = y^{1/2}\newlineNow we have: (x2y1/2)2(x^2 \cdot y^{1/2})^2
  6. Apply Outer Exponent: Apply the outer exponent of 22 to the simplified expression.\newlineWe have: (x2y12)2(x^2 \cdot y^{\frac{1}{2}})^2\newlineApply the exponent to both xx and yy: x22y(12)2x^{2\cdot2} \cdot y^{(\frac{1}{2})\cdot2}\newlineSimplify the exponents: x4y1=x4yx^4 \cdot y^1 = x^4 \cdot y
  7. Combine Simplified Expressions: Combine the simplified expressions from Step 44 and Step 66.\newlineWe have: (23)x1y1x4y(\frac{2}{3}) * x^{-1} * y^{-1} * x^4 * y\newlineCombine the exponents of xx: x1+4=x3x^{-1+4} = x^3\newlineCombine the exponents of yy: y1+1=y0=1y^{-1+1} = y^0 = 1 (since any number to the power of 00 is 11)\newlineNow we have: (23)x3(\frac{2}{3}) * x^3
  8. Write Final Expression: Write the final simplified expression.\newlineThe final simplified expression is: (23)×x3(\frac{2}{3}) \times x^3

More problems from Multiplication with rational exponents