Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
(6sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)+(2sqrt6)/(sqrt2+sqrt3)

Simplify 623+6436+2+262+3 \frac{6 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}

Full solution

Q. Simplify 623+6436+2+262+3 \frac{6 \sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}
  1. Rationalize Denominator First Term: Rationalize the denominator of the first term (623+6)(\frac{6\sqrt{2}}{\sqrt{3}+\sqrt{6}}). To do this, multiply the numerator and the denominator by the conjugate of the denominator, which is (36)(\sqrt{3}-\sqrt{6}).
  2. Multiply and Simplify First Term: Perform the multiplication for the first term.\newline((62)(36))/((3+6)(36))((6\sqrt{2})*(\sqrt{3}-\sqrt{6}))/((\sqrt{3}+\sqrt{6})*(\sqrt{3}-\sqrt{6}))\newlineUse the difference of squares formula a2b2a^2 - b^2 for the denominator.
  3. Calculate First Term: Calculate the denominator for the first term. \newline(3+6)(36)=(3)2(6)2=36=3(\sqrt{3}+\sqrt{6})\cdot(\sqrt{3}-\sqrt{6}) = (\sqrt{3})^2 - (\sqrt{6})^2 = 3 - 6 = -3
  4. Combine First Term: Calculate the numerator for the first term.\newline(62)(3)(62)(6)=6662=6612(6\sqrt{2})\cdot(\sqrt{3}) - (6\sqrt{2})\cdot(\sqrt{6}) = 6\sqrt{6} - 6\cdot 2 = 6\sqrt{6} - 12
  5. Rationalize Denominator Second Term: Combine the numerator and the denominator for the first term.\newline(6612)/(3)(6\sqrt{6} - 12)/(-3)\newlineDivide each term in the numerator by the denominator.\newline26+4-2\sqrt{6} + 4
  6. Multiply and Simplify Second Term: Rationalize the denominator of the second term (43)/(6+2)(4\sqrt{3})/(\sqrt{6}+\sqrt{2}). Multiply the numerator and the denominator by the conjugate of the denominator, which is (62)(\sqrt{6}-\sqrt{2}).
  7. Calculate Second Term: Perform the multiplication for the second term. (43)(62)/((6+2)(62))\left(4\sqrt{3}\right)\left(\sqrt{6}-\sqrt{2}\right)/\left(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)\right) Use the difference of squares formula for the denominator.
  8. Combine Second Term: Calculate the denominator for the second term.\newline(6+2)(62)=(6)2(2)2=62=4(\sqrt{6}+\sqrt{2})*(\sqrt{6}-\sqrt{2}) = (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4
  9. Rationalize Denominator Third Term: Calculate the numerator for the second term.\newline(43)(6)(43)(2)=41846(4\sqrt{3})\cdot(\sqrt{6}) - (4\sqrt{3})\cdot(\sqrt{2}) = 4\cdot\sqrt{18} - 4\cdot\sqrt{6}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.
  10. Multiply and Simplify Third Term: Continue simplifying the numerator for the second term.\newline4×3×24×6=122464 \times 3 \times \sqrt{2} - 4 \times \sqrt{6} = 12\sqrt{2} - 4\sqrt{6}
  11. Calculate Third Term: Combine the numerator and the denominator for the second term.\newline(12246)/4(12\sqrt{2} - 4\sqrt{6})/4\newlineDivide each term in the numerator by the denominator.\newline3263\sqrt{2} - \sqrt{6}
  12. Combine Third Term: Rationalize the denominator of the third term (26)/(2+3)(2\sqrt{6})/(\sqrt{2}+\sqrt{3}). Multiply the numerator and the denominator by the conjugate of the denominator, which is (23)(\sqrt{2}-\sqrt{3}).
  13. Combine All Terms: Perform the multiplication for the third term.\newline((26)(23))/((2+3)(23))((2\sqrt{6})*(\sqrt{2}-\sqrt{3}))/((\sqrt{2}+\sqrt{3})*(\sqrt{2}-\sqrt{3}))\newlineUse the difference of squares formula for the denominator.
  14. Group and Simplify: Calculate the denominator for the third term. \newline(2+3)(23)=(2)2(3)2=23=1(\sqrt{2}+\sqrt{3})*(\sqrt{2}-\sqrt{3}) = (\sqrt{2})^2 - (\sqrt{3})^2 = 2 - 3 = -1
  15. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.
  16. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.Continue simplifying the numerator for the third term.\newline43232=43624\sqrt{3} - 2\cdot3\cdot\sqrt{2} = 4\sqrt{3} - 6\sqrt{2}
  17. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.Continue simplifying the numerator for the third term.\newline43232=43624\sqrt{3} - 2\cdot3\cdot\sqrt{2} = 4\sqrt{3} - 6\sqrt{2}Combine the numerator and the denominator for the third term.\newline(4362)/(1)(4\sqrt{3} - 6\sqrt{2})/(-1)\newlineMultiply each term in the numerator by the denominator.\newline43+62-4\sqrt{3} + 6\sqrt{2}
  18. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.Continue simplifying the numerator for the third term.\newline43232=43624\sqrt{3} - 2\cdot3\cdot\sqrt{2} = 4\sqrt{3} - 6\sqrt{2}Combine the numerator and the denominator for the third term.\newline(4362)/(1)(4\sqrt{3} - 6\sqrt{2})/(-1)\newlineMultiply each term in the numerator by the denominator.\newline43+62-4\sqrt{3} + 6\sqrt{2}Combine all three terms.\newline(26+4)(326)+(43+62)(-2\sqrt{6} + 4) - (3\sqrt{2} - \sqrt{6}) + (-4\sqrt{3} + 6\sqrt{2})
  19. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot 2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.Continue simplifying the numerator for the third term.\newline43232=43624\sqrt{3} - 2\cdot 3\cdot\sqrt{2} = 4\sqrt{3} - 6\sqrt{2}Combine the numerator and the denominator for the third term.\newline(4362)/(1)(4\sqrt{3} - 6\sqrt{2})/(-1)\newlineMultiply each term in the numerator by the denominator.\newline43+62-4\sqrt{3} + 6\sqrt{2}Combine all three terms.\newline(26+4)(326)+(43+62)(-2\sqrt{6} + 4) - (3\sqrt{2} - \sqrt{6}) + (-4\sqrt{3} + 6\sqrt{2})Group like terms and simplify.\newline(266)+(4+623243)(-2\sqrt{6} - \sqrt{6}) + (4 + 6\sqrt{2} - 3\sqrt{2} - 4\sqrt{3})\newline36+3243+4-3\sqrt{6} + 3\sqrt{2} - 4\sqrt{3} + 4
  20. Check and Final Answer: Calculate the numerator for the third term.\newline(26)(2)(26)(3)=223218(2\sqrt{6})\cdot(\sqrt{2}) - (2\sqrt{6})\cdot(\sqrt{3}) = 2\cdot2\sqrt{3} - 2\cdot\sqrt{18}\newlineSimplify 18\sqrt{18} to 323\cdot\sqrt{2}.Continue simplifying the numerator for the third term.\newline43232=43624\sqrt{3} - 2\cdot3\cdot\sqrt{2} = 4\sqrt{3} - 6\sqrt{2}Combine the numerator and the denominator for the third term.\newline(4362)/(1)(4\sqrt{3} - 6\sqrt{2})/(-1)\newlineMultiply each term in the numerator by the denominator.\newline43+62-4\sqrt{3} + 6\sqrt{2}Combine all three terms.\newline(26+4)(326)+(43+62)(-2\sqrt{6} + 4) - (3\sqrt{2} - \sqrt{6}) + (-4\sqrt{3} + 6\sqrt{2})Group like terms and simplify.\newline(266)+(4+623243)(-2\sqrt{6} - \sqrt{6}) + (4 + 6\sqrt{2} - 3\sqrt{2} - 4\sqrt{3})\newline36+3243+4-3\sqrt{6} + 3\sqrt{2} - 4\sqrt{3} + 4Check for any possible simplifications and write the final answer.\newlineThere are no further simplifications, so the final answer is:\newline36+3243+4-3\sqrt{6} + 3\sqrt{2} - 4\sqrt{3} + 4

More problems from Simplify rational expressions