Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.

((3z^(2))/(z^(-3)))^(-2)
Write your answer using only positive exponents.

Simplify.\newline(3z2z3)2 \left(\frac{3 z^{2}}{z^{-3}}\right)^{-2} \newlineWrite your answer using only positive exponents.

Full solution

Q. Simplify.\newline(3z2z3)2 \left(\frac{3 z^{2}}{z^{-3}}\right)^{-2} \newlineWrite your answer using only positive exponents.
  1. Apply Negative Exponent Rule: Apply the negative exponent rule to the entire expression.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We will apply this rule to the entire expression.\newline(3z2z3)2=1(3z2z3)2\left(\frac{3z^{2}}{z^{-3}}\right)^{-2} = \frac{1}{\left(\frac{3z^{2}}{z^{-3}}\right)^{2}}
  2. Simplify Fraction Inside Parentheses: Simplify the expression inside the parentheses before raising it to the power of 22. We have a fraction raised to a negative exponent. First, we simplify the fraction by applying the rule that za/zb=zabz^{a}/z^{b} = z^{a-b}. (3z2)/(z3)=3z2(3)=3z2+3=3z5(3z^{2})/(z^{-3}) = 3z^{2 - (-3)} = 3z^{2 + 3} = 3z^{5}
  3. Raise Simplified Expression to Power of 22: Now raise the simplified expression to the power of 22.\newlineWe have (3z5)2(3z^{5})^2. When raising a product to an exponent, we raise each factor to the exponent separately.\newline(3z5)2=32×(z5)2=9z5×2=9z10(3z^{5})^2 = 3^2 \times (z^{5})^2 = 9z^{5\times2} = 9z^{10}
  4. Apply Negative Exponent Rule to Original Expression: Apply the negative exponent rule to the original expression with the simplified base.\newlineNow we take the reciprocal of the simplified expression from Step 33, as indicated by the original negative exponent.\newline1(3z2z3)2=19z10\frac{1}{\left(\frac{3z^{2}}{z^{-3}}\right)^{2}} = \frac{1}{9z^{10}}

More problems from Multiplication with rational exponents