Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify (3x32y3x2y12)2\left(\frac{3x^{\frac{3}{2}}y^{3}}{x^{2}y^{-\frac{1}{2}}}\right)^{-2}

Full solution

Q. Simplify (3x32y3x2y12)2\left(\frac{3x^{\frac{3}{2}}y^{3}}{x^{2}y^{-\frac{1}{2}}}\right)^{-2}
  1. Rewrite with negative exponent: Rewrite the expression with negative exponent outside the parentheses.\newlineThe negative exponent indicates that we should take the reciprocal of the base. In this case, the base is the entire fraction inside the parentheses.
  2. Apply negative exponent to fraction: Apply the negative exponent to both the numerator and the denominator of the fraction.\newlineWhen an entire fraction is raised to a negative exponent, we flip the fraction and change the sign of the exponent to positive.\newline(3x32y3x2y12)2\left(\frac{3x^{\frac{3}{2}}y^3}{x^2y^{-\frac{1}{2}}}\right)^{-2} becomes (x2y123x32y3)2\left(\frac{x^2y^{-\frac{1}{2}}}{3x^{\frac{3}{2}}y^3}\right)^2
  3. Apply exponent to terms: Apply the exponent to each term inside the parentheses.\newlineWhen raising a fraction to an exponent, we raise both the numerator and the denominator to that exponent.\newline(x2y(1/2))2/(3x(3/2)y3)2(x^{2}y^{(-1/2)})^{2}/(3x^{(3/2)}y^{3})^{2}
  4. Simplify using power rule: Simplify the expression by applying the power to power rule.\newlineThe power to power rule states that (am)n=amn(a^m)^n = a^{m*n}. We apply this rule to each term in the numerator and the denominator.\newlinex(22)y(122)32x(322)y(32)\frac{x^{(2*2)}y^{(-\frac{1}{2}*2)}}{3^2x^{(\frac{3}{2}*2)}y^{(3*2)}}
  5. Perform exponent multiplication: Perform the multiplication of the exponents.\newlineNow we multiply the exponents to simplify the expression further.\newlinex4y1/(9x3y6)x^{4}y^{-1}/(9x^{3}y^{6})
  6. Combine like terms: Combine the like terms by subtracting the exponents.\newlineWhen dividing terms with the same base, we subtract the exponents.\newlinex(43)y(16)9\frac{x^{(4-3)}y^{(-1-6)}}{9}
  7. Perform exponent subtraction: Simplify the expression by performing the subtraction of the exponents.\newlineNow we subtract the exponents to get the final simplified form.\newlinex1y7/9x^{1}y^{-7}/9
  8. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlineNegative exponents indicate that the term is on the wrong side of the fraction line, so we move them to the other side to make the exponents positive.\newlinex9y7\frac{x}{9y^7}

More problems from Multiplication with rational exponents