Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

simplify. \newlinesec2x1secx1\frac{\sec^{2}x-1}{\sec x-1}

Full solution

Q. simplify. \newlinesec2x1secx1\frac{\sec^{2}x-1}{\sec x-1}
  1. Recognize Pythagorean Identity: We recognize that the numerator sec2x1\sec^{2}x - 1 is a Pythagorean identity which can be rewritten as tan2x\tan^{2}x.\newlinesec2x1=tan2x\sec^{2}x - 1 = \tan^{2}x
  2. Rewrite Using Identity: Now we rewrite the original expression using the identity from step 11.\newline(12.(sec2x1))/(secx1)=(12.tan2x)/(secx1)(12. (\sec^{2}x-1))/(\sec x-1) = (12. \tan^{2}x)/(\sec x-1)
  3. Factor Numerator: We can factor the numerator as 12×tan2x12 \times \tan^{2}x, which is 1212 times the square of tan(x)\tan(x). \newline12tan2xsecx1=12×tan2xsecx1\frac{12 \cdot \tan^{2}x}{\sec x-1} = 12 \times \frac{\tan^{2}x}{\sec x-1}
  4. Substitute Trigonometric Ratios: We notice that tan(x)\tan(x) can be expressed as sin(x)cos(x)\frac{\sin(x)}{\cos(x)} and sec(x)\sec(x) as 1cos(x)\frac{1}{\cos(x)}. So, tan2(x)=(sin(x)cos(x))2\tan^{2}(x) = \left(\frac{\sin(x)}{\cos(x)}\right)^2 and sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}
  5. Simplify Expression: Substitute tan(x)\tan(x) and sec(x)\sec(x) with their respective trigonometric ratios in the expression.12×(tan2x)/(secx1)=12×((sin(x)/cos(x))2)/((1/cos(x))1)12 \times (\tan^{2}x)/(\sec x-1) = 12 \times ((\sin(x)/\cos(x))^2)/((1/\cos(x))-1)
  6. Rewrite Using Pythagorean Identity: Simplify the expression by multiplying both the numerator and the denominator by cos(x)\cos(x), the common denominator of the fractions within the expression.\newline12×(sin(x)cos(x))212 \times \left(\frac{\sin(x)}{\cos(x)}\right)^2/(1cos(x))1\left(\frac{1}{\cos(x)}\right)-1 = 12×sin2(x)1cos(x)12 \times \frac{\sin^{2}(x)}{1 - \cos(x)}
  7. Factor Numerator: We recognize that sin2x\sin^{2}x can be rewritten using the Pythagorean identity sin2x=1cos2x\sin^{2}x = 1 - \cos^{2}x. \newline12×(sin2x)/(1cos(x))=12×(1cos2x)/(1cos(x))12 \times (\sin^{2}x)/(1 - \cos(x)) = 12 \times (1 - \cos^{2}x)/(1 - \cos(x))
  8. Cancel Common Factor: Now we can factor the numerator as a difference of squares: (1cos(x))(1+cos(x))(1 - \cos(x))(1 + \cos(x)). \newline12×(1cos2(x))/(1cos(x))=12×((1cos(x))(1+cos(x)))/(1cos(x))12 \times (1 - \cos^2(x))/(1 - \cos(x)) = 12 \times ((1 - \cos(x))(1 + \cos(x)))/(1 - \cos(x))
  9. Final Simplified Form: We can cancel out the common factor of (1cos(x))(1 - \cos(x)) in the numerator and the denominator.\newline12×((1cos(x))(1+cos(x)))/(1cos(x))=12×(1+cos(x))12 \times ((1 - \cos(x))(1 + \cos(x)))/(1 - \cos(x)) = 12 \times (1 + \cos(x))
  10. Final Simplified Form: We can cancel out the common factor of (1cos(x))(1 - \cos(x)) in the numerator and the denominator.12×(1cos(x))(1+cos(x))1cos(x)=12×(1+cos(x))12 \times \frac{(1 - \cos(x))(1 + \cos(x))}{1 - \cos(x)} = 12 \times (1 + \cos(x))The final simplified form of the expression is 12×(1+cos(x))12 \times (1 + \cos(x)).

More problems from Simplify radical expressions involving fractions