Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Show that 
(-(2)/(5)+(4)/(9))+(-(3)/(4))=-(2)/(5)+{(4)/(9)+(-(3)/(4))}.

Show that (25+49)+(34)=25+{49+(34)} \left(-\frac{2}{5}+\frac{4}{9}\right)+\left(-\frac{3}{4}\right)=-\frac{2}{5}+\left\{\frac{4}{9}+\left(-\frac{3}{4}\right)\right\} .

Full solution

Q. Show that (25+49)+(34)=25+{49+(34)} \left(-\frac{2}{5}+\frac{4}{9}\right)+\left(-\frac{3}{4}\right)=-\frac{2}{5}+\left\{\frac{4}{9}+\left(-\frac{3}{4}\right)\right\} .
  1. Simplify left side: We will start by simplifying the left side of the equation:\newline(25)+(49)-\left(\frac{2}{5}\right)+\left(\frac{4}{9}\right)+\left(-\left(\frac{33}{44}\right)\right)\newlineFirst, we add the fractions 25-\frac{2}{5} and 49\frac{4}{9}. Since they have different denominators, we need to find a common denominator.
  2. Add fractions with common denominator: The common denominator for 55 and 99 is 4545. We convert each fraction to have this common denominator:\newline25=2×95×9=1845-\frac{2}{5} = -\frac{2\times9}{5\times9} = -\frac{18}{45}\newline49=4×59×5=2045\frac{4}{9} = \frac{4\times5}{9\times5} = \frac{20}{45}\newlineNow we add these two fractions:\newline1845+2045=201845=245-\frac{18}{45} + \frac{20}{45} = \frac{20-18}{45} = \frac{2}{45}
  3. Add remaining fraction: Next, we add the fraction 34-\frac{3}{4} to the result 245\frac{2}{45}. The common denominator for 4545 and 44 is 180180. We convert each fraction to have this common denominator:\newline245=2×445×4=8180\frac{2}{45} = \frac{2\times4}{45\times4} = \frac{8}{180}\newline34=3×454×45=135180-\frac{3}{4} = -\frac{3\times45}{4\times45} = -\frac{135}{180}\newlineNow we add these two fractions:\newline8180+(135180)=8135180=127180\frac{8}{180} + \left(-\frac{135}{180}\right) = \frac{8-135}{180} = -\frac{127}{180}\newlineSo the left side of the equation simplifies to:\newline(25+49)+(34)=127180\left(-\frac{2}{5}+\frac{4}{9}\right)+\left(-\frac{3}{4}\right) = -\frac{127}{180}
  4. Simplify right side: Now we simplify the right side of the equation:\newline25+{49+(34)}-\frac{2}{5}+\left\{\frac{4}{9}+\left(-\frac{3}{4}\right)\right\}\newlineWe start by adding the fractions 49\frac{4}{9} and 34-\frac{3}{4}. As before, we need a common denominator, which is 3636.\newline49=4×49×4=1636\frac{4}{9} = \frac{4\times4}{9\times4} = \frac{16}{36}\newline34=3×94×9=2736-\frac{3}{4} = -\frac{3\times9}{4\times9} = -\frac{27}{36}\newlineNow we add these two fractions:\newline1636+(2736)=162736=1136\frac{16}{36} + \left(-\frac{27}{36}\right) = \frac{16-27}{36} = -\frac{11}{36}
  5. Add fractions with common denominator: We now have the simplified form of the right side of the equation:\newline25+(1136)-\frac{2}{5}+\left(-\frac{11}{36}\right)\newlineThe common denominator for 55 and 3636 is 180180. We convert each fraction to have this common denominator:\newline25=2×365×36=72180-\frac{2}{5} = -\frac{2\times36}{5\times36} = -\frac{72}{180}\newline1136=11×536×5=55180-\frac{11}{36} = -\frac{11\times5}{36\times5} = -\frac{55}{180}\newlineNow we add these two fractions:\newline72180+(55180)=(72+55180)=127180-\frac{72}{180} + \left(-\frac{55}{180}\right) = \left(-\frac{72+55}{180}\right) = -\frac{127}{180}\newlineSo the right side of the equation simplifies to:\newline25+{49+(34)}=127180-\frac{2}{5}+\left\{\frac{4}{9}+\left(-\frac{3}{4}\right)\right\} = -\frac{127}{180}
  6. Add remaining fraction: Comparing both sides of the equation, we have:\newlineLeft side: (25+49)+(34)=127180\left(-\frac{2}{5}+\frac{4}{9}\right)+\left(-\frac{3}{4}\right) = -\frac{127}{180}\newlineRight side: 25+{49+(34)}=127180-\frac{2}{5}+\left\{\frac{4}{9}+\left(-\frac{3}{4}\right)\right\} = -\frac{127}{180}\newlineSince both sides are equal, we have shown that the original equation is true.

More problems from Multiplication with rational exponents