Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Shota invests 
$1000 in a certificate of deposit that earns interest. The investment's value is multiplied by 1.02 each year.
Which expression gives the investment's value after 5 years?
Choose 1 answer:
(A) 
1000*1.02^(5)
(B) 
1000*(1+1.02)^(5)
(C) 
1000+(1+1.02)^(5)
(D) 
1000+1.02^(5)

Shota invests $1000 \$ 1000 in a certificate of deposit that earns interest. The investment's value is multiplied by 11.0202 each year.\newlineWhich expression gives the investment's value after 55 years?\newlineChoose 11 answer:\newline(A) 10001.025 1000 \cdot 1.02^{5} \newline(B) 1000(1+1.02)5 1000 \cdot(1+1.02)^{5} \newline(C) 1000+(1+1.02)5 1000+(1+1.02)^{5} \newline(D) 1000+1.025 1000+1.02^{5}

Full solution

Q. Shota invests $1000 \$ 1000 in a certificate of deposit that earns interest. The investment's value is multiplied by 11.0202 each year.\newlineWhich expression gives the investment's value after 55 years?\newlineChoose 11 answer:\newline(A) 10001.025 1000 \cdot 1.02^{5} \newline(B) 1000(1+1.02)5 1000 \cdot(1+1.02)^{5} \newline(C) 1000+(1+1.02)5 1000+(1+1.02)^{5} \newline(D) 1000+1.025 1000+1.02^{5}
  1. Understand the problem: Understand the problem.\newlineWe need to find the expression that represents the value of an investment after 55 years, given that the investment increases by a factor of 1.021.02 each year.
  2. Identify the correct formula: Identify the correct formula for compound interest.\newlineThe value of an investment that earns compound interest is calculated using the formula:\newlineFinal Value = Initial Investment ×\times (1+Interest Rate)Number of Periods(1 + \text{Interest Rate})^{\text{Number of Periods}}\newlineIn this case, the interest rate is 2%2\% or 0.020.02, and the number of periods is 55 years.
  3. Translate the information: Translate the information into the formula.\newlineUsing the formula from Step 22, we can write the expression for the investment's value after 55 years as:\newlineFinal Value = 1000×(1+0.02)51000 \times (1 + 0.02)^{5}\newlineSimplify the expression inside the parentheses:\newlineFinal Value = 1000×(1.02)51000 \times (1.02)^{5}
  4. Match the expression with the given options: Match the expression with the given options.\newlineThe expression we found in Step 33 is 1000×(1.02)51000 \times (1.02)^{5}, which corresponds to option (A)(A).

More problems from Compound interest