Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, A1A^{-1}, that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient.\newline{2x5y=6 x+y=8\begin{cases} -2x-5y=-6 \ -x+y=8 \end{cases}\newlineA1=[]x=y=A^{-1}=\square[\square]\quad x=\square\quad y=\square

Full solution

Q. Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, A1A^{-1}, that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient.\newline{2x5y=6 x+y=8\begin{cases} -2x-5y=-6 \ -x+y=8 \end{cases}\newlineA1=[]x=y=A^{-1}=\square[\square]\quad x=\square\quad y=\square
  1. Write System of Equations: Step 11: Write the system of equations in matrix form.\newlineWe have the system:\newline2x5y=6-2x - 5y = -6\newlinex+y=8-x + y = 8\newlineThis can be represented as:\newlineA[x,y]=[b]A * [x, y] = [b]\newlineWhere A=[[2,5],[1,1]]A = [[-2, -5], [-1, 1]] and b=[6,8]b = [-6, 8].
  2. Calculate Determinant of Matrix: Step 22: Calculate the determinant of matrix AA. The determinant of AA, det(A)\text{det}(A), is calculated as: det(A)=(2)(1)(5)(1)=25=7\text{det}(A) = (-2)(1) - (-5)(-1) = -2 - 5 = -7.
  3. Find Inverse of Matrix: Step 33: Find the inverse of matrix AA, A1A^{-1}.\newlineUsing the formula for the inverse of a 22x22 matrix, A1=1det(A)×adj(A)A^{-1} = \frac{1}{\text{det}(A)} \times \text{adj}(A).\newlineadj(A)\text{adj}(A) is the adjugate of AA, which is [1amp;5 1amp;2]\begin{bmatrix} 1 & 5 \ 1 & -2 \end{bmatrix}.\newlineSo, A1=17×[1amp;5 1amp;2]=[17amp;57 17amp;27]A^{-1} = \frac{1}{-7} \times \begin{bmatrix} 1 & 5 \ 1 & -2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{7} & -\frac{5}{7} \ -\frac{1}{7} & \frac{2}{7} \end{bmatrix}.
  4. Multiply Inverse Matrix: Step 44: Multiply the inverse matrix A1A^{-1} by the matrix bb to find the values of xx and yy.\newlineUsing matrix multiplication, we get:\newlineA^{\(-1\)} \cdot b = \left[\begin{array}{cc}\(\newline\)-\frac{\(1\)}{\(7\)} & -\frac{\(5\)}{\(7\)} (\newline\)-\frac{\(1\)}{\(7\)} & \frac{\(2\)}{\(7\)}\(\newline\)\end{array}\right] \cdot \left[\begin{array}{c}\(\newline\)\(-6\) (\newline\)\(8\)\(\newline\)\end{array}\right]\newline =[(17)(6)+(57)(8),(17)(6)+(27)(8)]= \left[\left(-\frac{1}{7}\right)(-6) + \left(-\frac{5}{7}\right)(8), \left(-\frac{1}{7}\right)(-6) + \left(\frac{2}{7}\right)(8)\right]\newline =[67407,67+167]= \left[\frac{6}{7} - \frac{40}{7}, \frac{6}{7} + \frac{16}{7}\right]\newline =[347,227]= \left[-\frac{34}{7}, \frac{22}{7}\right]\newline $= [\(-4\).\(857\), \(3\).\(143\)].

More problems from Solve trigonometric equations