Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
2x^(-(1)/(2))

(2)/(sqrt(x^(2)))

(1)/(sqrt(2x^(2)))

(1)/(sqrt(2x))

(2)/(sqrtx)

Select the expression that is equivalent to 2x12 2 x^{-\frac{1}{2}} \newline2x2 \frac{2}{\sqrt{x^{2}}} \newline12x2 \frac{1}{\sqrt{2 x^{2}}} \newline12x \frac{1}{\sqrt{2 x}} \newline2x \frac{2}{\sqrt{x}}

Full solution

Q. Select the expression that is equivalent to 2x12 2 x^{-\frac{1}{2}} \newline2x2 \frac{2}{\sqrt{x^{2}}} \newline12x2 \frac{1}{\sqrt{2 x^{2}}} \newline12x \frac{1}{\sqrt{2 x}} \newline2x \frac{2}{\sqrt{x}}
  1. Understand given expression: First, let's understand the given expression 2x(1)/(2)2x^{-(1)/(2)}. The negative exponent indicates that the term is in the denominator, and the (1/2)(1/2) exponent indicates a square root. So, we can rewrite the expression as:\newline2×(x1/2)2 \times (x^{-1/2})\newline= 2/(x1/2)2 / (x^{1/2})\newline= 2/x2 / \sqrt{x}
  2. Rewrite expression: Now, let's compare the rewritten expression with the given options:\newline(2)/(x2)(2)/(\sqrt{x^{2}}) - This is not equivalent because x2\sqrt{x^2} simplifies to x|x|, not x\sqrt{x}.\newline(1)/(2x2)(1)/(\sqrt{2x^{2}}) - This is not equivalent because 2x2\sqrt{2x^2} simplifies to 2x\sqrt{2}\cdot|x|, not x\sqrt{x}.\newline(1)/(2x)(1)/(\sqrt{2x}) - This is not equivalent because there is a missing factor of 22 in the numerator.\newlinex2\sqrt{x^2}00 - This matches our rewritten expression x2\sqrt{x^2}11.

More problems from Simplify radical expressions with root inside the root