Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((7x)^((4)/(3)))

(1)/(root(3)((7x)^(4)))

root(3)((7x)^(4))

(1)/(root(4)((7x)^(3)))

root(4)((7x)^(3))

Select the expression that is equivalent to 1(7x)43 \frac{1}{(7 x)^{\frac{4}{3}}} \newline1(7x)43 \frac{1}{\sqrt[3]{(7 x)^{4}}} \newline(7x)43 \sqrt[3]{(7 x)^{4}} \newline1(7x)34 \frac{1}{\sqrt[4]{(7 x)^{3}}} \newline(7x)34 \sqrt[4]{(7 x)^{3}}

Full solution

Q. Select the expression that is equivalent to 1(7x)43 \frac{1}{(7 x)^{\frac{4}{3}}} \newline1(7x)43 \frac{1}{\sqrt[3]{(7 x)^{4}}} \newline(7x)43 \sqrt[3]{(7 x)^{4}} \newline1(7x)34 \frac{1}{\sqrt[4]{(7 x)^{3}}} \newline(7x)34 \sqrt[4]{(7 x)^{3}}
  1. Understand Given Expression: Understand the given expression.\newlineWe are given the expression (1)/((7x)(4)/(3))(1)/((7x)^{(4)/(3)}) and we need to find an equivalent expression. The exponent (4)/(3)(4)/(3) can be interpreted as "the cube root of the quantity raised to the fourth power."
  2. Rewrite Using Radical Notation: Rewrite the given expression using radical notation.\newlineThe expression (1)/((7x)(4)/(3))(1)/((7x)^{(4)/(3)}) can be rewritten using the radical notation as (1)/(7x)43(1)/\sqrt[3]{(7x)^{4}}.
  3. Compare with Options: Compare the rewritten expression with the options.\newlineWe have the expression (1)/((7x)43)(1)/(\sqrt[3]{(7x)^{4}}) from Step 22. Now we compare this with the given options:\newline- (1)/((7x)43)(1)/(\sqrt[3]{(7x)^{4}}) is the same as our rewritten expression.\newline- (7x)43\sqrt[3]{(7x)^{4}} is not equivalent because it lacks the division by 11.\newline- (1)/((7x)34)(1)/(\sqrt[4]{(7x)^{3}}) is not equivalent because the root and the exponent do not match the original expression.\newline- (7x)34\sqrt[4]{(7x)^{3}} is not equivalent for the same reason as the previous option.
  4. Select Correct Expression: Select the correct equivalent expression.\newlineThe correct equivalent expression is (1(7x)43)(\frac{1}{\sqrt[3]{(7x)^{4}}}) because it matches the original expression when rewritten using radical notation.

More problems from Multiplication with rational exponents