Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((3x)^((5)/(4)))

(1)/(root(5)((3x)^(4)))

(1)/(root(4)((3x)^(5)))

root(4)((3x)^(5))

root(5)((3x)^(4))

Select the expression that is equivalent to 1(3x)54 \frac{1}{(3 x)^{\frac{5}{4}}} \newline1(3x)45 \frac{1}{\sqrt[5]{(3 x)^{4}}} \newline1(3x)54 \frac{1}{\sqrt[4]{(3 x)^{5}}} \newline(3x)54 \sqrt[4]{(3 x)^{5}} \newline(3x)45 \sqrt[5]{(3 x)^{4}}

Full solution

Q. Select the expression that is equivalent to 1(3x)54 \frac{1}{(3 x)^{\frac{5}{4}}} \newline1(3x)45 \frac{1}{\sqrt[5]{(3 x)^{4}}} \newline1(3x)54 \frac{1}{\sqrt[4]{(3 x)^{5}}} \newline(3x)54 \sqrt[4]{(3 x)^{5}} \newline(3x)45 \sqrt[5]{(3 x)^{4}}
  1. Understand given expression: Understand the given expression.\newlineThe given expression is (1)/((3x)(5)/(4))(1)/((3x)^{(5)/(4)}). This is a fraction with 11 in the numerator and a power expression in the denominator.
  2. Rewrite denominator using radical notation: Rewrite the denominator using radical notation.\newlineThe expression \(3x)^{\frac{55}{44}}\ can be rewritten using radical notation. The denominator exponent \frac{\(5\)}{\(4\)})\ means the \(4th root of \(3x)\ raised to the 55th power.
  3. Apply radical notation: Apply the radical notation to the expression.\newlineThe expression (1)/((3x)(5)/(4))(1)/((3x)^{(5)/(4)}) is equivalent to (1)/(3x)54(1)/\sqrt[4]{(3x)^{5}} because the denominator is the 44th root of (3x)(3x) to the 55th power.
  4. Check other options for equivalence: Check the other options for equivalence.\newlineOption 1(3x)45\frac{1}{\sqrt[5]{(3x)^{4}}} is not equivalent because it represents the 55th root of (3x)4(3x)^{4}.\newlineOption (3x)54\sqrt[4]{(3x)^{5}} is not equivalent because it lacks the division by 11.\newlineOption (3x)45\sqrt[5]{(3x)^{4}} is not equivalent because it represents the 55th root of (3x)4(3x)^{4}.

More problems from Multiplication with rational exponents