Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((2x)^((5)/(2)))

(1)/(sqrt((2x)^(5)))

root(5)((2x)^(2))

sqrt((2x)^(5))

(1)/(root(5)((2x)^(2)))

Select the expression that is equivalent to 1(2x)52 \frac{1}{(2 x)^{\frac{5}{2}}} \newline1(2x)5 \frac{1}{\sqrt{(2 x)^{5}}} \newline(2x)25 \sqrt[5]{(2 x)^{2}} \newline(2x)5 \sqrt{(2 x)^{5}} \newline1(2x)25 \frac{1}{\sqrt[5]{(2 x)^{2}}}

Full solution

Q. Select the expression that is equivalent to 1(2x)52 \frac{1}{(2 x)^{\frac{5}{2}}} \newline1(2x)5 \frac{1}{\sqrt{(2 x)^{5}}} \newline(2x)25 \sqrt[5]{(2 x)^{2}} \newline(2x)5 \sqrt{(2 x)^{5}} \newline1(2x)25 \frac{1}{\sqrt[5]{(2 x)^{2}}}
  1. Understand Given Expression: Understand the given expression.\newlineThe given expression is (1)/((2x)(5)/(2))(1)/((2x)^{(5)/(2)}). We need to find an equivalent expression among the provided options.
  2. Rewrite Using Exponents: Rewrite the given expression using the property of exponents.\newlineThe exponent (5/2)(5/2) can be written as a combination of a whole number and a fraction: 2+1/22 + 1/2, which corresponds to the square and the square root, respectively. So, (2x)(5/2)(2x)^{(5/2)} is equivalent to ((2x)2)(1/2)(2x)(1/2)((2x)^2)^{(1/2)} \cdot (2x)^{(1/2)}.
  3. Simplify Rewritten Expression: Simplify the rewritten expression.\newline((2x)2)12((2x)^2)^{\frac{1}{2}} simplifies to 2x2x because the square and the square root cancel each other out. The remaining part, (2x)12(2x)^{\frac{1}{2}}, is the square root of 2x2x. So, (2x)52(2x)^{\frac{5}{2}} simplifies to 2x2x2x \cdot \sqrt{2x}.
  4. Write as Denominator: Write the simplified expression as a denominator.\newlineThe original expression 1(2x)52\frac{1}{(2x)^{\frac{5}{2}}} can now be written as 12x2x\frac{1}{2x \cdot \sqrt{2x}}.
  5. Compare with Provided Options: Compare the simplified expression with the provided options.\newlineThe correct equivalent expression must have the same base and exponent as our simplified expression. We are looking for an expression that represents the reciprocal of 2x2x multiplied by the square root of 2x2x.
  6. Eliminate Incorrect Options: Eliminate incorrect options.\newlineOption 1(2x)5\frac{1}{\sqrt{(2x)^{5}}} is incorrect because it represents the square root of (2x)5(2x)^5, not the square root of (2x)2(2x)^2 multiplied by 2x2x.\newlineOption (2x)25\sqrt[5]{(2x)^{2}} is incorrect because it represents the 55th root of (2x)2(2x)^2, not the reciprocal of 2x2x multiplied by the square root of 2x2x.\newlineOption (2x)5\sqrt{(2x)^{5}} is incorrect because it represents the square root of (2x)5(2x)^5, not the reciprocal of 2x2x multiplied by the square root of 2x2x.\newlineOption (2x)5(2x)^522 is the correct equivalent expression because it represents the reciprocal of the 55th root of (2x)2(2x)^2, which is the same as the original expression (2x)5(2x)^544.

More problems from Multiplication with rational exponents