Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((2x^(2)+3)^(-(3)/(5)))

root(3)((2x^(2)+3)^(5))

(1)/(root(3)((2x^(2)+3)^(5)))

root(5)((2x^(2)+3)^(3))

(1)/(root(5)((2x^(2)+3)^(3)))

Select the expression that is equivalent to 1(2x2+3)35 \frac{1}{\left(2 x^{2}+3\right)^{-\frac{3}{5}}} \newline(2x2+3)53 \sqrt[3]{\left(2 x^{2}+3\right)^{5}} \newline1(2x2+3)53 \frac{1}{\sqrt[3]{\left(2 x^{2}+3\right)^{5}}} \newline(2x2+3)35 \sqrt[5]{\left(2 x^{2}+3\right)^{3}} \newline1(2x2+3)35 \frac{1}{\sqrt[5]{\left(2 x^{2}+3\right)^{3}}}

Full solution

Q. Select the expression that is equivalent to 1(2x2+3)35 \frac{1}{\left(2 x^{2}+3\right)^{-\frac{3}{5}}} \newline(2x2+3)53 \sqrt[3]{\left(2 x^{2}+3\right)^{5}} \newline1(2x2+3)53 \frac{1}{\sqrt[3]{\left(2 x^{2}+3\right)^{5}}} \newline(2x2+3)35 \sqrt[5]{\left(2 x^{2}+3\right)^{3}} \newline1(2x2+3)35 \frac{1}{\sqrt[5]{\left(2 x^{2}+3\right)^{3}}}
  1. Use Negative Exponent Property: We are given the expression (1)/((2x2+3)(3)/(5))(1)/((2x^{2}+3)^{-(3)/(5)}). To simplify this expression, we can use the property of negative exponents which states that a(n)=1/(an)a^{(-n)} = 1/(a^{n}).
  2. Apply Negative Exponent Property: Applying the negative exponent property to our expression, we get:\newline(1)/((2x2+3)(3)/(5))=(2x2+3)35(1)/((2x^{2}+3)^{-(3)/(5)}) = (2x^{2}+3)^{\frac{3}{5}}
  3. Simplify to Positive Exponent: Now we need to find the equivalent expression among the given options. We have simplified the original expression to (2x2+3)35(2x^{2}+3)^{\frac{3}{5}}, which is a positive exponent form. We need to match this with one of the options.
  4. Find Equivalent Expression: Looking at the options, we can see that the equivalent expression in radical form would be the fifth root of (2x2+3)(2x^{2}+3) raised to the third power, because the exponent 35\frac{3}{5} means the fifth root (denominator) of the quantity raised to the third power (numerator).
  5. Convert to Radical Form: The correct expression in radical form is therefore: (2x2+3)35\sqrt[5]{(2x^{2}+3)^{3}}
  6. Match with Given Options: Comparing this with the given options, we find that the equivalent expression is: 1(2x2+3)35\frac{1}{\sqrt[5]{(2x^{2}+3)^{3}}}

More problems from Multiplication with rational exponents