Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the expression that is equivalent to 
(1)/((2x)^(-(1)/(3)))

(1)/(root(3)(2x))

root(3)(2x)

sqrt((2x)^(3))

(1)/(sqrt((2x)^(3)))

Select the expression that is equivalent to 1(2x)13 \frac{1}{(2 x)^{-\frac{1}{3}}} \newline12x3 \frac{1}{\sqrt[3]{2 x}} \newline2x3 \sqrt[3]{2 x} \newline(2x)3 \sqrt{(2 x)^{3}} \newline1(2x)3 \frac{1}{\sqrt{(2 x)^{3}}}

Full solution

Q. Select the expression that is equivalent to 1(2x)13 \frac{1}{(2 x)^{-\frac{1}{3}}} \newline12x3 \frac{1}{\sqrt[3]{2 x}} \newline2x3 \sqrt[3]{2 x} \newline(2x)3 \sqrt{(2 x)^{3}} \newline1(2x)3 \frac{1}{\sqrt{(2 x)^{3}}}
  1. Understand Expression: Understand the given expression.\newlineWe have the expression 1(2x)13\frac{1}{(2x)^{-\frac{1}{3}}}. This is a fraction with a negative exponent in the denominator.
  2. Apply Negative Exponent Rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. We can apply this rule to move the term with the negative exponent from the denominator to the numerator.\newline1(2x)13=(2x)13\frac{1}{(2x)^{-\frac{1}{3}}} = (2x)^{\frac{1}{3}}
  3. Recognize Exponent Meaning: Recognize the meaning of the exponent (1/3)(1/3).\newlineThe exponent (1/3)(1/3) is equivalent to the cube root. Therefore, (2x)(1/3)(2x)^{(1/3)} is the same as the cube root of 2x2x.\newline(2x)(1/3)=2x3(2x)^{(1/3)} = \sqrt[3]{2x}
  4. Compare with Options: Compare the result with the given options.\newlineThe expression we have found, 2x3\sqrt[3]{2x}, matches one of the given options.

More problems from Multiplication with rational exponents