Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(y^(-8)y^(-6))/(x^(5)x^(3))

x^(8)y^(2)

(1)/(x^(8)y^(2))

(1)/(x^(8)y^(14))

x^(8)y^(14)

Select the equivalent expression.\newliney8y6x5x3 \frac{y^{-8} y^{-6}}{x^{5} x^{3}} \newlinex8y2 x^{8} y^{2} \newline1x8y2 \frac{1}{x^{8} y^{2}} \newline1x8y14 \frac{1}{x^{8} y^{14}} \newlinex8y14 x^{8} y^{14}

Full solution

Q. Select the equivalent expression.\newliney8y6x5x3 \frac{y^{-8} y^{-6}}{x^{5} x^{3}} \newlinex8y2 x^{8} y^{2} \newline1x8y2 \frac{1}{x^{8} y^{2}} \newline1x8y14 \frac{1}{x^{8} y^{14}} \newlinex8y14 x^{8} y^{14}
  1. Simplify numerator: Simplify the numerator by adding the exponents of yy. When multiplying powers with the same base, you add the exponents. y8×y6=y8+6y^{-8} \times y^{-6} = y^{-8 + -6} = y14y^{-14}
  2. Simplify denominator: Simplify the denominator by adding the exponents of xx. Similarly, when multiplying powers with the same base, you add the exponents. x5×x3=x5+3=x8x^{5} \times x^{3} = x^{5 + 3} = x^{8}
  3. Write simplified expression: Write the simplified expression.\newlineNow we have y14y^{-14} in the numerator and x8x^{8} in the denominator.\newlineSo, the simplified expression is (y14)/(x8)(y^{-14})/(x^{8})
  4. Convert negative exponents: Convert negative exponents to positive by taking the reciprocal.\newlineA negative exponent indicates that the base is on the wrong side of the fraction line, so we take the reciprocal to make the exponent positive.\newline(y14)/(x8)=(1)/(y14x8)(y^{-14})/(x^{8}) = (1)/(y^{14}x^{8})

More problems from Multiplication with rational exponents