Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-8)*x^(-7))/(x^(-5))

x^(10)

x^(4)

(1)/(x^(4))

(1)/(x^(10))

Select the equivalent expression.\newlinex8x7x5 \frac{x^{-8} \cdot x^{-7}}{x^{-5}} \newlinex10 x^{10} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}} \newline1x10 \frac{1}{x^{10}}

Full solution

Q. Select the equivalent expression.\newlinex8x7x5 \frac{x^{-8} \cdot x^{-7}}{x^{-5}} \newlinex10 x^{10} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}} \newline1x10 \frac{1}{x^{10}}
  1. Simplify Exponents: Simplify the numerator using the product of powers property.\newlineThe product of powers property states that when you multiply two exponents with the same base, you add the exponents.\newlineSo, x8×x7x^{-8} \times x^{-7} becomes x(8+7)x^{(-8 + -7)}.\newlineCalculate the sum of the exponents.\newline8+7=15-8 + -7 = -15\newlineSo, x8×x7=x15x^{-8} \times x^{-7} = x^{-15}
  2. Divide Exponents: Divide the numerator by the denominator using the quotient of powers property.\newlineThe quotient of powers property states that when you divide two exponents with the same base, you subtract the exponents.\newlineSo, x15/x5x^{-15} / x^{-5} becomes x15(5)x^{-15 - (-5)}.\newlineCalculate the difference of the exponents.\newline15(5)=15+5=10-15 - (-5) = -15 + 5 = -10\newlineSo, x15/x5=x10x^{-15} / x^{-5} = x^{-10}
  3. Write Final Expression: Write the final expression.\newlineThe expression x10x^{-10} can be written as 1/(x10)1/(x^{10}).\newlineThis is because a negative exponent indicates the reciprocal of the base raised to the positive of that exponent.\newlineSo, the equivalent expression is 1/(x10)1/(x^{10}).

More problems from Multiplication with rational exponents