Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-8)*x^(-5))^((4)/(13))

x^(4)

(1)/(x^(4))

(1)/(root(4)(x))

root(4)(x)

Select the equivalent expression.\newline(x8x5)413 \left(x^{-8} \cdot x^{-5}\right)^{\frac{4}{13}} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}} \newline1x4 \frac{1}{\sqrt[4]{x}} \newlinex4 \sqrt[4]{x}

Full solution

Q. Select the equivalent expression.\newline(x8x5)413 \left(x^{-8} \cdot x^{-5}\right)^{\frac{4}{13}} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}} \newline1x4 \frac{1}{\sqrt[4]{x}} \newlinex4 \sqrt[4]{x}
  1. Apply Exponent Rule: Apply the exponent rule for multiplying powers with the same base.\newlineWhen multiplying powers with the same base, we add the exponents.\newlinex8×x5=x8+5x^{-8} \times x^{-5} = x^{-8 + -5}\newline=x13= x^{-13}
  2. Apply Power of Power Rule: Apply the power of a power rule.\newlineWhen raising a power to another power, we multiply the exponents.\newline(x(13))(413)=x(13(413))(x^{(-13)})^{(\frac{4}{13})} = x^{(-13 \cdot (\frac{4}{13}))}\newline=x(5213)= x^{(-\frac{52}{13})}\newline=x(4)= x^{(-4)}
  3. Rewrite with Positive Exponent: Rewrite the expression with a positive exponent. x4x^{-4} is equivalent to 1/(x4)1/(x^{4}).

More problems from Multiplication with rational exponents