Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(8)*x^(4))/(x^(8))

(1)/(x^(4))

(1)/(x^(3))

x^(3)

x^(4)

Select the equivalent expression.\newlinex8x4x8 \frac{x^{8} \cdot x^{4}}{x^{8}} \newline1x4 \frac{1}{x^{4}} \newline1x3 \frac{1}{x^{3}} \newlinex3 x^{3} \newlinex4 x^{4}

Full solution

Q. Select the equivalent expression.\newlinex8x4x8 \frac{x^{8} \cdot x^{4}}{x^{8}} \newline1x4 \frac{1}{x^{4}} \newline1x3 \frac{1}{x^{3}} \newlinex3 x^{3} \newlinex4 x^{4}
  1. Simplify Exponents: Simplify the expression (x8x4)/(x8)(x^{8}\cdot x^{4})/(x^{8}). When multiplying powers with the same base, add the exponents. x8x4=x8+4=x12x^{8}\cdot x^{4} = x^{8+4} = x^{12}.
  2. Multiply Like Bases: Now divide x12x^{12} by x8x^{8}. When dividing powers with the same base, subtract the exponents. x12/x8=x128=x4x^{12} / x^{8} = x^{12-8} = x^{4}.
  3. Divide Like Bases: Check the given options to see which one matches the simplified expression x4x^{4}. The correct option is x4x^{4}.

More problems from Multiplication with rational exponents