Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(8))/(x^(-1)*x^(-5))

(1)/(x^(4))

x^(14)

x^(4)

(1)/(x^(14))

Select the equivalent expression.\newlinex8x1x5 \frac{x^{8}}{x^{-1} \cdot x^{-5}} \newline1x4 \frac{1}{x^{4}} \newlinex14 x^{14} \newlinex4 x^{4} \newline1x14 \frac{1}{x^{14}}

Full solution

Q. Select the equivalent expression.\newlinex8x1x5 \frac{x^{8}}{x^{-1} \cdot x^{-5}} \newline1x4 \frac{1}{x^{4}} \newlinex14 x^{14} \newlinex4 x^{4} \newline1x14 \frac{1}{x^{14}}
  1. Simplify Exponents: Simplify the denominator using the property of exponents that states when you multiply powers with the same base, you add the exponents.\newlinex1×x5=x1+5x^{-1} \times x^{-5} = x^{-1 + -5}\newline=x6= x^{-6}
  2. Rewrite Expression: Rewrite the original expression with the simplified denominator.\newline(x8)/(x1x5)(x^{8})/(x^{-1}*x^{-5}) becomes (x8)/(x6)(x^{8})/(x^{-6})
  3. Apply Exponent Rule: Use the property of exponents that states when you divide powers with the same base, you subtract the exponents.\newline(x8)/(x6)=x8(6)(x^{8})/(x^{-6}) = x^{8 - (-6)}\newline= x8+6x^{8 + 6}\newline= x14x^{14}

More problems from Multiplication with rational exponents