Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-6)y^(-1))/(xy^(5))

x^(7)

(1)/(x^(7)y^(6))

(1)/(x^(7))

x^(7)y^(6)

Select the equivalent expression.\newlinex6y1xy5 \frac{x^{-6} y^{-1}}{x y^{5}} \newlinex7 x^{7} \newline1x7y6 \frac{1}{x^{7} y^{6}} \newline1x7 \frac{1}{x^{7}} \newlinex7y6 x^{7} y^{6}

Full solution

Q. Select the equivalent expression.\newlinex6y1xy5 \frac{x^{-6} y^{-1}}{x y^{5}} \newlinex7 x^{7} \newline1x7y6 \frac{1}{x^{7} y^{6}} \newline1x7 \frac{1}{x^{7}} \newlinex7y6 x^{7} y^{6}
  1. Simplify Exponents: Simplify the expression by dividing the exponents.\newlineWhen dividing powers with the same base, subtract the exponents.\newlinex(6)y(1)xy(5)=x(61)y(15)\frac{x^{(-6)}y^{(-1)}}{xy^{(5)}} = x^{(-6-1)}y^{(-1-5)}
  2. Subtract Exponents: Perform the subtraction of exponents. x(61)=x7x^{(-6-1)} = x^{-7} y(15)=y6y^{(-1-5)} = y^{-6} So, the expression becomes x7y6x^{-7}y^{-6}.
  3. Convert Negative Exponents: Rewrite the expression with positive exponents.\newlineTo convert a negative exponent to a positive exponent, take the reciprocal of the base.\newlinex7y6=(1/x7)(1/y6)=1/(x7y6)x^{-7}y^{-6} = (1/x^7)(1/y^6) = 1/(x^7y^6)
  4. Match Simplified Expression: Match the simplified expression with the given options.\newlineThe simplified expression is 1x7y6\frac{1}{x^7y^6}, which matches the option 1x7y6\frac{1}{x^{7}y^{6}}.

More problems from Multiplication with rational exponents