Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-3)yy)/(x^(-8))

(1)/(x^(5)y^(2))

x^(11)y^(2)

x^(5)y^(2)

(1)/(x^(11)y^(2))

Select the equivalent expression.\newlinex3yyx8 \frac{x^{-3} y y}{x^{-8}} \newline1x5y2 \frac{1}{x^{5} y^{2}} \newlinex11y2 x^{11} y^{2} \newlinex5y2 x^{5} y^{2} \newline1x11y2 \frac{1}{x^{11} y^{2}}

Full solution

Q. Select the equivalent expression.\newlinex3yyx8 \frac{x^{-3} y y}{x^{-8}} \newline1x5y2 \frac{1}{x^{5} y^{2}} \newlinex11y2 x^{11} y^{2} \newlinex5y2 x^{5} y^{2} \newline1x11y2 \frac{1}{x^{11} y^{2}}
  1. Simplify Exponents: Simplify the expression using the properties of exponents.\newlineWe have the expression (x3yy)/(x8)(x^{-3}yy)/(x^{-8}). To simplify, we can use the property of exponents that states when we divide like bases, we subtract the exponents.\newlineSo, x3/x8=x3(8)=x5x^{-3} / x^{-8} = x^{-3 - (-8)} = x^{5}.
  2. Combine yy Terms: Combine the yy terms.\newlineSince there is no exponent specified for yy in the numerator, we assume it is y1y^1. When we multiply like bases, we add the exponents.\newlineSo, y1×y1=y(1+1)=y2y^1 \times y^1 = y^{(1+1)} = y^2.
  3. Combine xx and yy Terms: Combine the simplified xx and yy terms.\newlineFrom Step 11, we have x5x^{5}, and from Step 22, we have y2y^{2}. Multiplying these together gives us the simplified expression:\newlinex5y2x^{5}y^{2}.
  4. Compare with Options: Compare the simplified expression with the given options.\newlineThe simplified expression we found is x5y2x^{5}y^{2}. We need to find the equivalent expression among the given options:\newline(1)/(x5y2)(1)/(x^{5}y^{2})\newlinex11y2x^{11}y^{2}\newlinex5y2x^{5}y^{2}\newline(1)/(x11y2)(1)/(x^{11}y^{2})\newlineThe correct equivalent expression is x5y2x^{5}y^{2}.

More problems from Multiplication with rational exponents