Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-3))/(x^(3)*x^(-7))

x^(7)

(1)/(x)

(1)/(x^(7))

x

Select the equivalent expression.\newlinex3x3x7 \frac{x^{-3}}{x^{3} \cdot x^{-7}} \newlinex7 x^{7} \newline1x \frac{1}{x} \newline1x7 \frac{1}{x^{7}} \newlinex x

Full solution

Q. Select the equivalent expression.\newlinex3x3x7 \frac{x^{-3}}{x^{3} \cdot x^{-7}} \newlinex7 x^{7} \newline1x \frac{1}{x} \newline1x7 \frac{1}{x^{7}} \newlinex x
  1. Simplify using properties of exponents: Simplify the expression using the properties of exponents.\newlineWhen dividing powers with the same base, subtract the exponents.\newlinex3x3x7=x3/x37\frac{x^{-3}}{x^{3}\cdot x^{-7}} = x^{-3}/x^{3-7}
  2. Perform subtraction in exponent: Continue simplifying the expression by performing the subtraction in the exponent. x3/(x37)=x3/(x4)x^{-3}/(x^{3-7}) = x^{-3}/(x^{-4})
  3. Further simplify using properties: Simplify the expression further using the properties of exponents.\newlineWhen dividing powers with the same base, subtract the exponents.\newlinex3/(x4)=x3(4)=x3+4=x1x^{-3}/(x^{-4}) = x^{-3 - (-4)} = x^{-3 + 4} = x^{1}
  4. Check for final simplification: Check the final expression for any possible simplification. x(1)x^{(1)} is already in its simplest form, as any number raised to the power of 11 is the number itself.

More problems from Multiplication with rational exponents