Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-2)*x^(-5))/(x^(8))

(1)/(x^(15))

x^(15)

x

(1)/(x)

Select the equivalent expression.\newlinex2x5x8 \frac{x^{-2} \cdot x^{-5}}{x^{8}} \newline1x15 \frac{1}{x^{15}} \newlinex15 x^{15} \newlinex x \newline1x \frac{1}{x}

Full solution

Q. Select the equivalent expression.\newlinex2x5x8 \frac{x^{-2} \cdot x^{-5}}{x^{8}} \newline1x15 \frac{1}{x^{15}} \newlinex15 x^{15} \newlinex x \newline1x \frac{1}{x}
  1. Simplify Exponents: We need to simplify the expression (x2x5)/(x8)(x^{-2}\cdot x^{-5})/(x^{8}). According to the properties of exponents, when we multiply two exponents with the same base, we add the exponents.\newlineCalculation: x2x5=x2+5=x7x^{-2} \cdot x^{-5} = x^{-2 + -5} = x^{-7}
  2. Combine Exponents: Now we have x7x^{-7} divided by x8x^{8}. According to the properties of exponents, when we divide two exponents with the same base, we subtract the exponents in the denominator from the exponents in the numerator.\newlineCalculation: x7/x8=x78=x15x^{-7} / x^{8} = x^{-7 - 8} = x^{-15}
  3. Rewrite Negative Exponent: The expression x15x^{-15} can be rewritten as 1x15\frac{1}{x^{15}} because any negative exponent indicates that the base is on the opposite side of the fraction line.\newlineCalculation: x15=1x15x^{-15} = \frac{1}{x^{15}}

More problems from Multiplication with rational exponents