Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(2))/(x^(-1)*x^(7))

(1)/(x^(6))

x^(6)

x^(4)

(1)/(x^(4))

Select the equivalent expression.\newlinex2x1x7 \frac{x^{2}}{x^{-1} \cdot x^{7}} \newline1x6 \frac{1}{x^{6}} \newlinex6 x^{6} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}}

Full solution

Q. Select the equivalent expression.\newlinex2x1x7 \frac{x^{2}}{x^{-1} \cdot x^{7}} \newline1x6 \frac{1}{x^{6}} \newlinex6 x^{6} \newlinex4 x^{4} \newline1x4 \frac{1}{x^{4}}
  1. Simplify Denominator: Simplify the denominator using the properties of exponents.\newlineWhen multiplying powers with the same base, you add the exponents.\newlinex1×x7=x1+7x^{-1} \times x^{7} = x^{-1 + 7}
  2. Calculate Exponent Sum: Calculate the sum of the exponents in the denominator.\newline1+7=6-1 + 7 = 6\newlineSo, x1×x7=x6x^{-1} \times x^{7} = x^{6}
  3. Rewrite Expression: Rewrite the original expression with the simplified denominator. \newline(x2)/(x1x7)(x^{2})/(x^{-1}*x^{7}) becomes (x2)/(x6)(x^{2})/(x^{6})
  4. Simplify Using Exponents: Simplify the expression using the properties of exponents.\newlineWhen dividing powers with the same base, you subtract the exponents.\newlinex2x6=x26\frac{x^{2}}{x^{6}} = x^{2-6}
  5. Calculate Exponent Difference: Calculate the difference of the exponents.\newline26=42 - 6 = -4\newlineSo, (x2)/(x6)=x4(x^{2})/(x^{6}) = x^{-4}
  6. Recognize Equivalent Expression: Recognize that x4x^{-4} is the same as 1x4\frac{1}{x^{4}}. Therefore, the equivalent expression is 1x4\frac{1}{x^{4}}.

More problems from Multiplication with rational exponents