Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(x^(-1)x^(-6)y^(7))/(y^(2))

(y^(5))/(x^(7))

(x^(5))/(y^(5))

(x^(7))/(y^(5))

(y^(5))/(x^(5))

Select the equivalent expression.\newlinex1x6y7y2 \frac{x^{-1} x^{-6} y^{7}}{y^{2}} \newliney5x7 \frac{y^{5}}{x^{7}} \newlinex5y5 \frac{x^{5}}{y^{5}} \newlinex7y5 \frac{x^{7}}{y^{5}} \newliney5x5 \frac{y^{5}}{x^{5}}

Full solution

Q. Select the equivalent expression.\newlinex1x6y7y2 \frac{x^{-1} x^{-6} y^{7}}{y^{2}} \newliney5x7 \frac{y^{5}}{x^{7}} \newlinex5y5 \frac{x^{5}}{y^{5}} \newlinex7y5 \frac{x^{7}}{y^{5}} \newliney5x5 \frac{y^{5}}{x^{5}}
  1. Combine powers of x: Simplify the expression by combining the powers of x.\newlineWhen multiplying powers with the same base, you add the exponents.\newline(x1x6)y7/y2 (x^{-1} \cdot x^{-6}) \cdot y^{7} / y^{2} \newline= x1+6y7/y2 x^{-1 + -6} \cdot y^{7} / y^{2} \newline= x7y7/y2 x^{-7} \cdot y^{7} / y^{2}
  2. Combine powers of y: Simplify the expression by combining the powers of y.\newlineWhen dividing powers with the same base, you subtract the exponents.\newlinex7(y7y2)x^{-7} \cdot \left(\frac{y^{7}}{y^{2}}\right)\newline= x7y72x^{-7} \cdot y^{7 - 2}\newline= x7y5x^{-7} \cdot y^{5}
  3. Rewrite with positive exponents: Rewrite the expression with positive exponents.\newlinex7x^{-7} can be written as 1x7\frac{1}{x^{7}}.\newlineSo, x7y5x^{-7} \cdot y^{5} becomes y5x7\frac{y^{5}}{x^{7}}

More problems from Multiplication with rational exponents