Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((u^(-1))/(u^(8)))^((5)/(6))

sqrt(u^(15))

(1)/(sqrt(u^(15)))

root(15)(u^(2))

(1)/(root(15)(u^(2)))

Select the equivalent expression.\newline(u1u8)56 \left(\frac{u^{-1}}{u^{8}}\right)^{\frac{5}{6}} \newlineu15 \sqrt{u^{15}} \newline1u15 \frac{1}{\sqrt{u^{15}}} \newlineu215 \sqrt[15]{u^{2}} \newline1u215 \frac{1}{\sqrt[15]{u^{2}}}

Full solution

Q. Select the equivalent expression.\newline(u1u8)56 \left(\frac{u^{-1}}{u^{8}}\right)^{\frac{5}{6}} \newlineu15 \sqrt{u^{15}} \newline1u15 \frac{1}{\sqrt{u^{15}}} \newlineu215 \sqrt[15]{u^{2}} \newline1u215 \frac{1}{\sqrt[15]{u^{2}}}
  1. Simplify using Quotient Rule: First, let's simplify the expression inside the parentheses using the quotient rule of exponents, which states that am/an=a(mn)a^m / a^n = a^{(m-n)}.\newline((u1)/(u8))=u18=u9((u^{-1})/(u^{8})) = u^{-1-8} = u^{-9}
  2. Apply Power Rule: Now, let's apply the power to the simplified expression using the power rule of exponents, which states that (am)n=a(mn)(a^m)^n = a^{(m*n)}.\newline(u9)(56)=u9(56)=u456=u152(u^{-9})^{(\frac{5}{6})} = u^{-9*(\frac{5}{6})} = u^{-\frac{45}{6}} = u^{-\frac{15}{2}}
  3. Convert to Radical Form: Next, we convert the negative exponent to a positive exponent by taking the reciprocal of the base, which gives us the expression in the form of a radical.\newlineu152=1u152=1u15u^{-\frac{15}{2}} = \frac{1}{u^{\frac{15}{2}}} = \frac{1}{\sqrt{u^{15}}}
  4. Find Equivalent Expression: Now, we compare the simplified expression with the given options to find the equivalent one.\newlineThe equivalent expression is (1)/(u15)(1)/(\sqrt{u^{15}}).

More problems from Simplify the product of two radical expressions having same variable