Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((t)/(t^(7)))^((5)/(24))

root(4)(t^(5))

root(5)(t^(4))

(1)/(root(5)(t^(4)))

(1)/(root(4)(t^(5)))

Select the equivalent expression.\newline(tt7)524 \left(\frac{t}{t^{7}}\right)^{\frac{5}{24}} \newlinet54 \sqrt[4]{t^{5}} \newlinet45 \sqrt[5]{t^{4}} \newline1t45 \frac{1}{\sqrt[5]{t^{4}}} \newline1t54 \frac{1}{\sqrt[4]{t^{5}}}

Full solution

Q. Select the equivalent expression.\newline(tt7)524 \left(\frac{t}{t^{7}}\right)^{\frac{5}{24}} \newlinet54 \sqrt[4]{t^{5}} \newlinet45 \sqrt[5]{t^{4}} \newline1t45 \frac{1}{\sqrt[5]{t^{4}}} \newline1t54 \frac{1}{\sqrt[4]{t^{5}}}
  1. Simplify Base: Simplify the base of the given expression.\newlineWe have (tt7)(524)\left(\frac{t}{t^{7}}\right)^{\left(\frac{5}{24}\right)}. First, we simplify the fraction inside the parentheses by using the property of exponents that states when dividing like bases, we subtract the exponents.\newlinet1/t7=t(17)=t6.t^1 / t^7 = t^{(1-7)} = t^{-6}.
  2. Apply Exponent: Apply the exponent to the simplified base.\newlineNow we have (t6)(5)/(24)(t^{-6})^{(5)/(24)}. We use the property of exponents that states (am)n=amn(a^m)^n = a^{m*n} to simplify the expression.\newline(t6)(5)/(24)=t(6)(5/24)=t5/4(t^{-6})^{(5)/(24)} = t^{(-6)*(5/24)} = t^{-5/4}.
  3. Convert Negative Exponent: Convert the negative exponent to a positive exponent by taking the reciprocal. t(5/4)t^{(-5/4)} can be rewritten as 1/(t(5/4))1/(t^{(5/4)}). This is because a negative exponent indicates the reciprocal of the base raised to the positive of that exponent.
  4. Rewrite as Radical: Rewrite the expression as a radical.\newline1t54\frac{1}{t^{\frac{5}{4}}} can be rewritten as a radical expression. The denominator of the exponent (44) becomes the index of the root, and the numerator (55) becomes the exponent inside the root.\newline1t54=1t54\frac{1}{t^{\frac{5}{4}}} = \frac{1}{\sqrt[4]{t^5}}.
  5. Compare with Options: Compare the result with the given options.\newlineThe expression we have found, 1/t541/\sqrt[4]{t^5}, matches one of the given options.

More problems from Multiplication with rational exponents