Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((t^(6))/(t^(-2)))^((1)/(14))

(1)/(root(4)(t^(7)))

(1)/(root(7)(t^(4)))

root(7)(t^(4))

root(4)(t^(7))

Select the equivalent expression.\newline(t6t2)114 \left(\frac{t^{6}}{t^{-2}}\right)^{\frac{1}{14}} \newline1t74 \frac{1}{\sqrt[4]{t^{7}}} \newline1t47 \frac{1}{\sqrt[7]{t^{4}}} \newlinet47 \sqrt[7]{t^{4}} \newlinet74 \sqrt[4]{t^{7}}

Full solution

Q. Select the equivalent expression.\newline(t6t2)114 \left(\frac{t^{6}}{t^{-2}}\right)^{\frac{1}{14}} \newline1t74 \frac{1}{\sqrt[4]{t^{7}}} \newline1t47 \frac{1}{\sqrt[7]{t^{4}}} \newlinet47 \sqrt[7]{t^{4}} \newlinet74 \sqrt[4]{t^{7}}
  1. Simplify Exponents in Parentheses: Simplify the expression inside the parentheses by adding the exponents of tt. When dividing powers with the same base, subtract the exponents: ta/tb=tabt^{a} / t^{b} = t^{a-b}. So, (t6)/(t2)=t6(2)=t6+2=t8.(t^{6}) / (t^{-2}) = t^{6 - (-2)} = t^{6 + 2} = t^{8}.
  2. Apply Exponent Rule: Apply the exponent (1/14)(1/14) to the simplified base t8t^{8}. Now we have (t8)(1)/(14)(t^{8})^{(1)/(14)}. When raising a power to a power, multiply the exponents: (ta)b=tab(t^{a})^{b} = t^{a*b}. So, (t8)(1)/(14)=t8(1/14)=t8/14=t4/7(t^{8})^{(1)/(14)} = t^{8*(1/14)} = t^{8/14} = t^{4/7}.
  3. Convert to Radical Expression: Convert the exponent to a radical expression.\newlineThe expression t47t^{\frac{4}{7}} can be written as the 77th root of tt raised to the 44th power, which is t47\sqrt[7]{t^4}.

More problems from Multiplication with rational exponents