Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(t^(-2)*t^(7))^((3)/(20))

(1)/(root(4)(t^(3)))

root(3)(t^(4))

(1)/(root(3)(t^(4)))

root(4)(t^(3))

Select the equivalent expression.\newline(t2t7)320 \left(t^{-2} \cdot t^{7}\right)^{\frac{3}{20}} \newline1t34 \frac{1}{\sqrt[4]{t^{3}}} \newlinet43 \sqrt[3]{t^{4}} \newline1t43 \frac{1}{\sqrt[3]{t^{4}}} \newlinet34 \sqrt[4]{t^{3}}

Full solution

Q. Select the equivalent expression.\newline(t2t7)320 \left(t^{-2} \cdot t^{7}\right)^{\frac{3}{20}} \newline1t34 \frac{1}{\sqrt[4]{t^{3}}} \newlinet43 \sqrt[3]{t^{4}} \newline1t43 \frac{1}{\sqrt[3]{t^{4}}} \newlinet34 \sqrt[4]{t^{3}}
  1. Simplify Exponents: Simplify the expression inside the parentheses by adding the exponents of tt. When multiplying powers with the same base, you add the exponents. t2×t7=t2+7=t5t^{-2} \times t^{7} = t^{-2 + 7} = t^{5}
  2. Apply Outer Exponent: Apply the outer exponent to the simplified base.\newlineNow we have (t5)(320)(t^{5})^{(\frac{3}{20})}. When raising a power to a power, you multiply the exponents.\newline(t5)(320)=t5×(320)=t1520(t^{5})^{(\frac{3}{20})} = t^{5 \times (\frac{3}{20})} = t^{\frac{15}{20}}
  3. Reduce Fraction: Simplify the exponent by reducing the fraction.\newlineThe fraction 1520\frac{15}{20} can be reduced to 34\frac{3}{4} by dividing both the numerator and the denominator by 55.\newlinet1520=t34t^{\frac{15}{20}} = t^{\frac{3}{4}}
  4. Use Radical Notation: Write the expression using radical notation.\newlineAn exponent of 34\frac{3}{4} means the fourth root of the number raised to the third power.\newlinet34=t34t^{\frac{3}{4}} = \sqrt[4]{t^3}

More problems from Multiplication with rational exponents