Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((s^(-8))/(s^(7)))^((1)/(6))

(1)/(sqrt(s^(5)))

root(5)(s^(2))

(1)/(root(5)(s^(2)))

sqrt(s^(5))

Select the equivalent expression.\newline(s8s7)16 \left(\frac{s^{-8}}{s^{7}}\right)^{\frac{1}{6}} \newline1s5 \frac{1}{\sqrt{s^{5}}} \newlines25 \sqrt[5]{s^{2}} \newline1s25 \frac{1}{\sqrt[5]{s^{2}}} \newlines5 \sqrt{s^{5}}

Full solution

Q. Select the equivalent expression.\newline(s8s7)16 \left(\frac{s^{-8}}{s^{7}}\right)^{\frac{1}{6}} \newline1s5 \frac{1}{\sqrt{s^{5}}} \newlines25 \sqrt[5]{s^{2}} \newline1s25 \frac{1}{\sqrt[5]{s^{2}}} \newlines5 \sqrt{s^{5}}
  1. Simplify Exponents: Simplify the expression inside the parentheses by using the laws of exponents.\newlineWhen dividing powers with the same base, subtract the exponents.\newline(s(8))/(s(7))=s(87)=s(15)(s^{(-8)})/(s^{(7)}) = s^{(-8 - 7)} = s^{(-15)}
  2. Apply Exponent Rule: Apply the exponent outside the parentheses to the simplified base.\newline(s15)16=s15×16=s156=s52(s^{-15})^{\frac{1}{6}} = s^{-15 \times \frac{1}{6}} = s^{-\frac{15}{6}} = s^{-\frac{5}{2}}
  3. Convert to Positive Exponent: Convert the negative exponent to a positive exponent by taking the reciprocal of the base.\newlines(52)=1s(52)s^{(-\frac{5}{2})} = \frac{1}{s^{(\frac{5}{2})}}
  4. Rewrite with Radical: Rewrite the expression with a radical to represent the fractional exponent.\newline1s52=1s5\frac{1}{s^{\frac{5}{2}}} = \frac{1}{\sqrt{s^{5}}}
  5. Compare with Options: Compare the result with the given options. The equivalent expression is 1s5\frac{1}{\sqrt{s^{5}}}.

More problems from Multiplication with rational exponents