Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(8)((b^(-8))/(b^(-6)))

b^(-4)

b^(-(1)/(4))

b^((1)/(4))

b^(4)

Select the equivalent expression.\newlineb8b68 \sqrt[8]{\frac{b^{-8}}{b^{-6}}} \newlineb4 b^{-4} \newlineb14 b^{-\frac{1}{4}} \newlineb14 b^{\frac{1}{4}} \newlineb4 b^{4}

Full solution

Q. Select the equivalent expression.\newlineb8b68 \sqrt[8]{\frac{b^{-8}}{b^{-6}}} \newlineb4 b^{-4} \newlineb14 b^{-\frac{1}{4}} \newlineb14 b^{\frac{1}{4}} \newlineb4 b^{4}
  1. Simplify Exponent Division: Simplify the expression inside the radical.\newlineWe have the expression b8b68\sqrt[8]{\frac{b^{-8}}{b^{-6}}}. To simplify the expression inside the radical, we use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, b8b6=b8(6)=b8+6=b2\frac{b^{-8}}{b^{-6}} = b^{-8 - (-6)} = b^{-8 + 6} = b^{-2}.
  2. Apply Radical: Apply the radical to the simplified expression.\newlineNow we have b28\sqrt[8]{b^{-2}}. The 88th root of b2b^{-2} can be written as (b2)18(b^{-2})^{\frac{1}{8}}.\newlineUsing the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}, we get b218=b14b^{-2 * \frac{1}{8}} = b^{-\frac{1}{4}}.
  3. Check Answer Choices: Check the answer choices for the equivalent expression.\newlineWe have simplified the expression to b14b^{-\frac{1}{4}}. Now we compare this with the given answer choices.\newlineThe correct answer choice that matches b14b^{-\frac{1}{4}} is b(14)b^{-\left(\frac{1}{4}\right)}.

More problems from Multiplication with rational exponents