Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(6)((k^(6))/(k^(4)))

k^(-(1)/(3))

k^(-3)

k^(3)

k^((1)/(3))

Select the equivalent expression.\newlinek6k46 \sqrt[6]{\frac{k^{6}}{k^{4}}} \newlinek13 k^{-\frac{1}{3}} \newlinek3 k^{-3} \newlinek3 k^{3} \newlinek13 k^{\frac{1}{3}}

Full solution

Q. Select the equivalent expression.\newlinek6k46 \sqrt[6]{\frac{k^{6}}{k^{4}}} \newlinek13 k^{-\frac{1}{3}} \newlinek3 k^{-3} \newlinek3 k^{3} \newlinek13 k^{\frac{1}{3}}
  1. Simplify Inside Sixth Root: Simplify the expression inside the sixth root.\newlineWe have the expression k6k46\sqrt[6]{\frac{k^{6}}{k^{4}}}. To simplify the expression inside the root, we use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, k6k4=k64=k2\frac{k^{6}}{k^{4}} = k^{6-4} = k^{2}.
  2. Apply Sixth Root: Apply the sixth root to the simplified expression.\newlineNow we apply the sixth root to k2k^{2}, which can be written as (k2)16(k^{2})^{\frac{1}{6}}.\newlineUsing the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}, we multiply the exponents.\newlineSo, (k2)16=k216=k26(k^{2})^{\frac{1}{6}} = k^{2*\frac{1}{6}} = k^{\frac{2}{6}}.
  3. Simplify Exponent: Simplify the exponent.\newlineWe simplify the fraction 26\frac{2}{6} by dividing both the numerator and the denominator by their greatest common divisor, which is 22.\newlineSo, k26k^{\frac{2}{6}} simplifies to k13k^{\frac{1}{3}}.

More problems from Multiplication with rational exponents