Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(4)((y^(-7))/(y^(-5)))

y^((1)/(2))

y^(2)

y^(-(1)/(2))

y^(-2)

Select the equivalent expression.\newliney7y54 \sqrt[4]{\frac{y^{-7}}{y^{-5}}} \newliney12 y^{\frac{1}{2}} \newliney2 y^{2} \newliney12 y^{-\frac{1}{2}} \newliney2 y^{-2}

Full solution

Q. Select the equivalent expression.\newliney7y54 \sqrt[4]{\frac{y^{-7}}{y^{-5}}} \newliney12 y^{\frac{1}{2}} \newliney2 y^{2} \newliney12 y^{-\frac{1}{2}} \newliney2 y^{-2}
  1. Simplify Expression: Simplify the expression inside the radical.\newlineWe have the expression y7y54\sqrt[4]{\frac{y^{-7}}{y^{-5}}}. To simplify the expression inside the radical, we use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, y7y5=y7(5)=y7+5=y2\frac{y^{-7}}{y^{-5}} = y^{-7 - (-5)} = y^{-7 + 5} = y^{-2}.
  2. Apply Fourth Root: Apply the fourth root to the simplified expression.\newlineNow we apply the fourth root to y2y^{-2}. The fourth root of a variable to an exponent is the same as raising the variable to the exponent divided by 44.\newlineSo, y24=y24=y12\sqrt[4]{y^{-2}} = y^{-\frac{2}{4}} = y^{-\frac{1}{2}}.
  3. Match Answer Choices: Match the simplified expression to the answer choices.\newlineThe simplified expression is y12y^{-\frac{1}{2}}. Looking at the answer choices, we see that y12y^{-\frac{1}{2}} matches the third option: y(12)y^{-\left(\frac{1}{2}\right)}.

More problems from Multiplication with rational exponents