Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.
root(33)((1)/(k^(8)*k^(3)))
(A) k^(-3)
(B) k^(3)
(C) k^((1)/(3))
(D) k^(-(1)/(3))

Select the equivalent expression.\newline1k8k333\sqrt[33]{\frac{1}{k^{8} \cdot k^{3}}} \newline(A) k3 k^{-3} \newline(B) k3 k^{3} r\newline(C) k13 k^{\frac{1}{3}} \newline(D) k13 k^{-\frac{1}{3}}

Full solution

Q. Select the equivalent expression.\newline1k8k333\sqrt[33]{\frac{1}{k^{8} \cdot k^{3}}} \newline(A) k3 k^{-3} \newline(B) k3 k^{3} r\newline(C) k13 k^{\frac{1}{3}} \newline(D) k13 k^{-\frac{1}{3}}
  1. Understand given expression: Understand the given expression.\newlineThe given expression is 1k8k333\sqrt[33]{\frac{1}{k^{8}*k^{3}}}.\newlineThis means we are looking for the 33rd33^{\text{rd}} root of the fraction 1k8k3\frac{1}{k^{8}*k^{3}}.
  2. Combine exponents in denominator: Combine the exponents in the denominator.\newlineWhen multiplying powers with the same base, we add the exponents.\newlineSo, k8×k3=k8+3=k11k^{8}\times k^{3} = k^{8+3} = k^{11}.\newlineNow the expression becomes 1k1133\sqrt[33]{\frac{1}{k^{11}}}.
  3. Convert radical expression to exponent form: Convert the radical expression to an exponent form.\newlineThe 33rd33^{\text{rd}} root of a number can be written as that number raised to the power of 1/331/33.\newlineSo, 1k1133\sqrt[33]{\frac{1}{k^{11}}} becomes (1k11)1/33\left(\frac{1}{k^{11}}\right)^{1/33}.
  4. Apply power of power rule: Apply the power of a power rule.\newlineWhen raising a power to a power, we multiply the exponents.\newlineSo, (1/k11)1/33(1/k^{11})^{1/33} becomes 1/k11(1/33)1/k^{11*(1/33)}.
  5. Simplify exponent: Simplify the exponent.\newlineMultiply the exponents: 11(1/33)=11/3311*(1/33) = 11/33.\newlineSimplify the fraction: 11/33=1/311/33 = 1/3.\newlineNow the expression is 1/k1/31/k^{1/3}.
  6. Write expression with negative exponent: Write the expression with a negative exponent.\newlineThe expression 1/k1/31/k^{1/3} can be written as k1/3k^{-1/3}.
  7. Match final expression with options: Match the final expression with the given options.\newlineThe final expression we found is k(1/3)k^{(-1/3)}, which matches one of the given options.

More problems from Multiplication with rational exponents