Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(30)((1)/(k^(-7)*k^(-5)))

k^(-(2)/(5))

k^(-(5)/(2))

k^((5)/(2))

k^((2)/(5))

Select the equivalent expression.\newline1k7k530 \sqrt[30]{\frac{1}{k^{-7} \cdot k^{-5}}} \newlinek25 k^{-\frac{2}{5}} \newlinek52 k^{-\frac{5}{2}} \newlinek52 k^{\frac{5}{2}} \newlinek25 k^{\frac{2}{5}}

Full solution

Q. Select the equivalent expression.\newline1k7k530 \sqrt[30]{\frac{1}{k^{-7} \cdot k^{-5}}} \newlinek25 k^{-\frac{2}{5}} \newlinek52 k^{-\frac{5}{2}} \newlinek52 k^{\frac{5}{2}} \newlinek25 k^{\frac{2}{5}}
  1. Simplify Inside Radical: We are given the expression:\newline1k7k530\sqrt[30]{\frac{1}{k^{-7} \cdot k^{-5}}}\newlineFirst, we need to simplify the expression inside the radical.
  2. Combine Exponents: Since the bases are the same kk, we can add the exponents when multiplying: k7×k5=k7+5=k12k^{-7} \times k^{-5} = k^{-7 + -5} = k^{-12} So, the expression becomes: 1k1230\sqrt[30]{\frac{1}{k^{-12}}}
  3. Move to Numerator: Now, we can rewrite the expression by moving kk to the numerator and changing the sign of the exponent: k1230\sqrt[30]{k^{12}}
  4. Rewrite Radical as Exponent: The radical k1230\sqrt[30]{k^{12}} can be rewritten as an exponent of 130\frac{1}{30}:k12130k^{12^{\frac{1}{30}}}
  5. Multiply Exponents: When raising a power to a power, we multiply the exponents: k^{\(12\)})^{\frac{\(1\)}{\(30\)}} = k^{\(12\) \times \frac{\(1\)}{\(30\)}} = k^{\frac{\(12\)}{\(30\)}}\
  6. Simplify Fraction: We can simplify the fraction \(\frac{12}{30} by dividing both the numerator and the denominator by their greatest common divisor, which is 66: k1230=k25k^{\frac{12}{30}} = k^{\frac{2}{5}}

More problems from Multiplication with rational exponents