Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(21)((1)/(d^(-7)*d))

d^((2)/(7))

d^((7)/(2))

d^(-(7)/(2))

d^(-(2)/(7))

Select the equivalent expression.\newline1d7d21 \sqrt[21]{\frac{1}{d^{-7} \cdot d}} \newlined27 d^{\frac{2}{7}} \newlined72 d^{\frac{7}{2}} \newlined72 d^{-\frac{7}{2}} \newlined27 d^{-\frac{2}{7}}

Full solution

Q. Select the equivalent expression.\newline1d7d21 \sqrt[21]{\frac{1}{d^{-7} \cdot d}} \newlined27 d^{\frac{2}{7}} \newlined72 d^{\frac{7}{2}} \newlined72 d^{-\frac{7}{2}} \newlined27 d^{-\frac{2}{7}}
  1. Simplify Inside Radical: Simplify the expression inside the radical.\newlineWe have the expression 1d7d21\sqrt[21]{\frac{1}{d^{-7} \cdot d}}. First, we need to simplify the denominator by multiplying d7d^{-7} by dd.\newlineUsing the property of exponents that states aman=am+na^{m} \cdot a^{n} = a^{m+n}, we get:\newlined7d=d7+1=d6d^{-7} \cdot d = d^{-7+1} = d^{-6}.\newlineSo, the expression becomes 1d621\sqrt[21]{\frac{1}{d^{-6}}}.
  2. Move Denominator to Numerator: Simplify the expression further by moving the denominator to the numerator.\newlineUsing the property of exponents that states (1/an)=an(1/a^{-n}) = a^n, we can rewrite the expression as:\newlined621\sqrt[21]{d^6}.
  3. Convert to Exponent Form: Convert the radical expression to an exponent form.\newlineThe 21st21^{\text{st}} root of d6d^6 can be written as d(6/21)d^{(6/21)}.\newlineSimplify the fraction 6/216/21 by dividing both the numerator and the denominator by their greatest common divisor, which is 33.\newlined(6/21)=d(2/7)d^{(6/21)} = d^{(2/7)}.
  4. Identify Equivalent Expression: Identify the equivalent expression from the given options.\newlineThe simplified expression is d27d^{\frac{2}{7}}, which matches one of the given options.

More problems from Multiplication with rational exponents