Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(18)(a^(-6)*a^(-3))

a^(2)

a^((1)/(2))

a^(-(1)/(2))

a^(-2)

Select the equivalent expression.\newlinea6a318 \sqrt[18]{a^{-6} \cdot a^{-3}} \newlinea2 a^{2} \newlinea12 a^{\frac{1}{2}} \newlinea12 a^{-\frac{1}{2}} \newlinea2 a^{-2}

Full solution

Q. Select the equivalent expression.\newlinea6a318 \sqrt[18]{a^{-6} \cdot a^{-3}} \newlinea2 a^{2} \newlinea12 a^{\frac{1}{2}} \newlinea12 a^{-\frac{1}{2}} \newlinea2 a^{-2}
  1. Understand the problem: Understand the problem.\newlineWe need to simplify the expression a6a318\sqrt[18]{a^{-6} \cdot a^{-3}} and select the equivalent expression from the given options.
  2. Apply exponent property: Apply the property of exponents for multiplication.\newlineWhen multiplying two exponents with the same base, we add the exponents.\newlinea6×a3=a6+3a^{-6} \times a^{-3} = a^{-6 + -3}
  3. Perform exponent addition: Perform the addition of exponents. a(6+3)=a9a^{(-6 + -3)} = a^{-9}
  4. Apply root to exponent: Apply the root to the exponent.\newlineThe 1818th root of a(9)a^{(-9)} can be written as a(9/18)a^{(-9/18)}.
  5. Simplify exponent fraction: Simplify the fraction in the exponent.\newline918-\frac{9}{18} simplifies to 12-\frac{1}{2}.\newlinea918=a12a^{-\frac{9}{18}} = a^{-\frac{1}{2}}
  6. Match with given options: Match the simplified expression with the given options.\newlineThe equivalent expression is a(1)/(2)a^{-(1)/(2)}.

More problems from Multiplication with rational exponents