Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(15)(s^(-7)*s^(2))

s^((1)/(3))

s^(-(1)/(3))

s^(-3)

s^(3)

Select the equivalent expression.\newlines7s215 \sqrt[15]{s^{-7} \cdot s^{2}} \newlines13 s^{\frac{1}{3}} \newlines13 s^{-\frac{1}{3}} \newlines3 s^{-3} \newlines3 s^{3}

Full solution

Q. Select the equivalent expression.\newlines7s215 \sqrt[15]{s^{-7} \cdot s^{2}} \newlines13 s^{\frac{1}{3}} \newlines13 s^{-\frac{1}{3}} \newlines3 s^{-3} \newlines3 s^{3}
  1. Simplify Exponent Expression: Simplify the expression inside the root.\newlineWe have the expression s7s215\sqrt[15]{s^{-7}\cdot s^{2}}. To simplify the expression inside the root, we use the property of exponents that states when multiplying like bases, we add the exponents.\newlines7s2=s7+2=s5s^{-7} \cdot s^{2} = s^{-7 + 2} = s^{-5}
  2. Apply Root: Apply the root to the simplified expression.\newlineNow we have s515\sqrt[15]{s^{-5}}. The 15th15^{\text{th}} root of s5s^{-5} can be written as s5/15s^{-5/15}, which simplifies to s1/3s^{-1/3}.
  3. Match to Options: Match the simplified expression to the given options.\newlineThe expression s(1/3)s^{(-1/3)} matches one of the given options, which is s(1)/(3)s^{-(1)/(3)}.

More problems from Multiplication with rational exponents