Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(15)((h^(4))/(h^(-5)))

h^(-(5)/(3))

h^((5)/(3))

h^(-(3)/(5))

h^((3)/(5))

Select the equivalent expression.\newlineh4h515 \sqrt[15]{\frac{h^{4}}{h^{-5}}} \newlineh53 h^{-\frac{5}{3}} \newlineh53 h^{\frac{5}{3}} \newlineh35 h^{-\frac{3}{5}} \newlineh35 h^{\frac{3}{5}}

Full solution

Q. Select the equivalent expression.\newlineh4h515 \sqrt[15]{\frac{h^{4}}{h^{-5}}} \newlineh53 h^{-\frac{5}{3}} \newlineh53 h^{\frac{5}{3}} \newlineh35 h^{-\frac{3}{5}} \newlineh35 h^{\frac{3}{5}}
  1. Simplify Exponent Inside Radical: Simplify the expression inside the radical.\newlineWe have the expression (h4h5)15\sqrt[15]{\left(\frac{h^{4}}{h^{-5}}\right)}. To simplify, we use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, h4h5=h4(5)=h4+5=h9\frac{h^{4}}{h^{-5}} = h^{4 - (-5)} = h^{4 + 5} = h^{9}.
  2. Apply 1515th Root: Apply the 1515th root to the simplified expression.\newlineNow we apply the 1515th root to h9h^{9}, which can be written as (h9)115(h^{9})^{\frac{1}{15}}.\newlineUsing the property of exponents (am)n=amn(a^{m})^{n} = a^{m*n}, we get h9115=h915h^{9*\frac{1}{15}} = h^{\frac{9}{15}}.
  3. Simplify Exponent: Simplify the exponent.\newlineSimplify the fraction 915\frac{9}{15} by dividing both the numerator and the denominator by their greatest common divisor, which is 33.\newlineh915=h35h^{\frac{9}{15}} = h^{\frac{3}{5}}.
  4. Match with Options: Match the simplified expression with the given options.\newlineThe simplified expression is h35h^{\frac{3}{5}}, which matches one of the given options.

More problems from Multiplication with rational exponents