Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(10)((s^(-1))/(s^(-6)))

s^(-(1)/(2))

s^(-2)

s^((1)/(2))

s^(2)

Select the equivalent expression.\newlines1s610 \sqrt[10]{\frac{s^{-1}}{s^{-6}}} \newlines12 s^{-\frac{1}{2}} \newlines2 s^{-2} \newlines12 s^{\frac{1}{2}} \newlines2 s^{2}

Full solution

Q. Select the equivalent expression.\newlines1s610 \sqrt[10]{\frac{s^{-1}}{s^{-6}}} \newlines12 s^{-\frac{1}{2}} \newlines2 s^{-2} \newlines12 s^{\frac{1}{2}} \newlines2 s^{2}
  1. Understand the expression: Understand the given expression.\newlineWe are given the expression (s1s6)10\sqrt[10]{\left(\frac{s^{-1}}{s^{-6}}\right)} and we need to simplify it to find the equivalent expression.
  2. Simplify inside the root: Simplify the expression inside the root.\newlineThe expression inside the root is s1s6\frac{s^{-1}}{s^{-6}}. When dividing exponential expressions with the same base, we subtract the exponents.\newlineSo, s1s6=s1(6)=s61=s5\frac{s^{-1}}{s^{-6}} = s^{-1 - (-6)} = s^{6 - 1} = s^5.
  3. Apply the root: Apply the root to the simplified expression.\newlineNow we have s510\sqrt[10]{s^5}. The 10th10^{\text{th}} root of s5s^5 can be written as (s5)110(s^5)^{\frac{1}{10}}.
  4. Use power of a power rule: Use the power of a power rule.\newlineUsing the power of a power rule, we multiply the exponents: (s5)110=s5110=s12(s^5)^{\frac{1}{10}} = s^{5*\frac{1}{10}} = s^{\frac{1}{2}}.
  5. Identify equivalent expression: Identify the equivalent expression.\newlineThe equivalent expression is s12s^{\frac{1}{2}}, which is one of the options given.

More problems from Multiplication with rational exponents