Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

root(10)((1)/(t^(8)*t^(6)))

t^(-(7)/(5))

t^((5)/(7))

t^(-(5)/(7))

t^((7)/(5))

Select the equivalent expression.\newline1t8t610 \sqrt[10]{\frac{1}{t^{8} \cdot t^{6}}} \newlinet75 t^{-\frac{7}{5}} \newlinet57 t^{\frac{5}{7}} \newlinet57 t^{-\frac{5}{7}} \newlinet75 t^{\frac{7}{5}}

Full solution

Q. Select the equivalent expression.\newline1t8t610 \sqrt[10]{\frac{1}{t^{8} \cdot t^{6}}} \newlinet75 t^{-\frac{7}{5}} \newlinet57 t^{\frac{5}{7}} \newlinet57 t^{-\frac{5}{7}} \newlinet75 t^{\frac{7}{5}}
  1. Understand given expression: We are given the expression:\newline1t8t610\sqrt[10]{\frac{1}{t^{8}\cdot t^{6}}}\newlineFirst, we need to understand that the 1010th root of a number can be written as a fractional exponent with the denominator being 1010.\newlineSo, we can rewrite the expression as:\newline(1t8t6)110\left(\frac{1}{t^{8}\cdot t^{6}}\right)^{\frac{1}{10}}
  2. Apply exponent rule: Next, we apply the exponent rule for multiplying with the same base, which states that when we multiply two exponents with the same base, we add the exponents:\newlinet8t^{8}\cdott6=t8+6=t14t^{6} = t^{8+6} = t^{14}\newlineSo, the expression becomes:\newline(1t14)110\left(\frac{1}{t^{14}}\right)^{\frac{1}{10}}
  3. Apply power of a quotient rule: Now, we apply the power of a quotient rule, which states that (a/b)n=an/bn(a/b)^n = a^n / b^n. In this case, we have:\newline(11/10)/(t14(1/10))(1^{1/10}) / (t^{14*(1/10)})\newlineSince 11 raised to any power is 11, the numerator remains 11:\newline1/t14/101 / t^{14/10}
  4. Simplify the exponent: We simplify the exponent by dividing 1414 by 1010: \newline1410=75\frac{14}{10} = \frac{7}{5}\newlineSo, the expression simplifies to:\newline1/t751 / t^{\frac{7}{5}}
  5. Write with negative exponent: Finally, we can write the expression with a negative exponent to move the tt term to the numerator: t(75)t^{-(\frac{7}{5})} This matches one of the answer choices.

More problems from Multiplication with rational exponents