Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(r^(7)*r^(-8))^((1)/(4))

r^(4)

root(4)(r)

(1)/(root(4)(r))

(1)/(r^(4))

Select the equivalent expression.\newline(r7r8)14 \left(r^{7} \cdot r^{-8}\right)^{\frac{1}{4}} \newliner4 r^{4} \newliner4 \sqrt[4]{r} \newline1r4 \frac{1}{\sqrt[4]{r}} \newline1r4 \frac{1}{r^{4}}

Full solution

Q. Select the equivalent expression.\newline(r7r8)14 \left(r^{7} \cdot r^{-8}\right)^{\frac{1}{4}} \newliner4 r^{4} \newliner4 \sqrt[4]{r} \newline1r4 \frac{1}{\sqrt[4]{r}} \newline1r4 \frac{1}{r^{4}}
  1. Combine Exponents: Simplify the expression inside the parentheses by combining the exponents.\newlineWhen multiplying powers with the same base, you add the exponents.\newliner7×r8=r7+(8)=r1r^{7} \times r^{-8} = r^{7 + (-8)} = r^{-1}
  2. Apply Outer Exponent: Apply the outer exponent to the simplified base.\newlineNow we have (r1)(14)(r^{-1})^{\left(\frac{1}{4}\right)}. When raising a power to a power, you multiply the exponents.\newline(r1)(14)=r1×(14)=r14(r^{-1})^{\left(\frac{1}{4}\right)} = r^{-1 \times \left(\frac{1}{4}\right)} = r^{-\frac{1}{4}}
  3. Rewrite Negative Exponent: Rewrite the negative exponent as a reciprocal.\newlineA negative exponent means that the base is on the wrong side of the fraction line, so we take the reciprocal and make the exponent positive.\newliner14=1r14r^{-\frac{1}{4}} = \frac{1}{r^{\frac{1}{4}}}
  4. Recognize Fourth Root: Recognize that r1/4r^{1/4} is the fourth root of rr. The expression (1)/(r1/4)(1)/(r^{1/4}) can be rewritten using the radical notation for roots. (1)/(r1/4)=(1)/r4(1)/(r^{1/4}) = (1)/\sqrt[4]{r}

More problems from Multiplication with rational exponents