Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((r^(-7))/(r^(4)))^((3)/(11))

(1)/(root(3)(r))

(1)/(r^(3))

root(3)(r)

r^(3)

Select the equivalent expression.\newline(r7r4)311 \left(\frac{r^{-7}}{r^{4}}\right)^{\frac{3}{11}} \newline1r3 \frac{1}{\sqrt[3]{r}} \newline1r3 \frac{1}{r^{3}} \newliner3 \sqrt[3]{r} \newliner3 r^{3}

Full solution

Q. Select the equivalent expression.\newline(r7r4)311 \left(\frac{r^{-7}}{r^{4}}\right)^{\frac{3}{11}} \newline1r3 \frac{1}{\sqrt[3]{r}} \newline1r3 \frac{1}{r^{3}} \newliner3 \sqrt[3]{r} \newliner3 r^{3}
  1. Simplify Exponents: Simplify the expression inside the parentheses by using the properties of exponents.\newlineWhen dividing like bases, subtract the exponents.\newline(r(7))/(r(4))=r(74)=r(11)(r^{(-7)})/(r^{(4)}) = r^{(-7 - 4)} = r^{(-11)}
  2. Apply Outer Exponent: Apply the outer exponent to the simplified base.\newlineNow we have (r11)(3)/(11)(r^{-11})^{(3)/(11)}.\newlineWhen raising a power to a power, multiply the exponents.\newline(r11)(3)/(11)=r11×(3)/(11)=r3(r^{-11})^{(3)/(11)} = r^{-11 \times (3)/(11)} = r^{-3}
  3. Rewrite Negative Exponent: Rewrite the negative exponent as a reciprocal.\newlineA negative exponent indicates the reciprocal of the base raised to the positive of that exponent.\newliner3=1r3r^{-3} = \frac{1}{r^{3}}
  4. Compare with Options: Compare the result with the given options.\newlineThe expression 1r3\frac{1}{r^{3}} matches one of the given options.

More problems from Multiplication with rational exponents