Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((n^(-5))/(n))^((5)/(24))

(1)/(root(4)(n^(5)))

root(5)(n^(4))

root(4)(n^(5))

(1)/(root(5)(n^(4)))

Select the equivalent expression.\newline(n5n)524 \left(\frac{n^{-5}}{n}\right)^{\frac{5}{24}} \newline1n54 \frac{1}{\sqrt[4]{n^{5}}} \newlinen45 \sqrt[5]{n^{4}} \newlinen54 \sqrt[4]{n^{5}} \newline1n45 \frac{1}{\sqrt[5]{n^{4}}}

Full solution

Q. Select the equivalent expression.\newline(n5n)524 \left(\frac{n^{-5}}{n}\right)^{\frac{5}{24}} \newline1n54 \frac{1}{\sqrt[4]{n^{5}}} \newlinen45 \sqrt[5]{n^{4}} \newlinen54 \sqrt[4]{n^{5}} \newline1n45 \frac{1}{\sqrt[5]{n^{4}}}
  1. Simplify base: Simplify the base of the expression.\newlineWe have the expression ((n5)/(n))(5)/(24)((n^{-5})/(n))^{(5)/(24)}. To simplify the base, we need to apply the exponent rule am/an=a(mn)a^m / a^n = a^{(m-n)}.\newlineSo, n5/n=n(51)=n6n^{-5} / n = n^{(-5-1)} = n^{-6}.
  2. Apply exponent: Apply the simplified base to the exponent.\newlineNow we have (n6)(5/24)(n^{-6})^{(5/24)}. According to the power of a power rule, (am)n=amn(a^m)^n = a^{m*n}, we multiply the exponents.\newlineSo, (n6)(5/24)=n(6)(5/24)=n5/4(n^{-6})^{(5/24)} = n^{(-6)*(5/24)} = n^{-5/4}.
  3. Rewrite with positive exponent: Rewrite the expression with a positive exponent.\newlineThe expression n(5/4)n^{(-5/4)} can be rewritten with a positive exponent by taking the reciprocal of the base.\newlineSo, n(5/4)=1n(5/4)n^{(-5/4)} = \frac{1}{n^{(5/4)}}.
  4. Convert to radical: Convert the exponent to a radical.\newlineThe expression 1n54\frac{1}{n^{\frac{5}{4}}} can be rewritten as a radical, where the denominator of the exponent becomes the index of the root.\newlineSo, 1n54=1n54\frac{1}{n^{\frac{5}{4}}} = \frac{1}{\sqrt[4]{n^5}}.
  5. Compare with options: Compare the result with the given options.\newlineThe expression we have found, 1/n541/\sqrt[4]{n^5}, matches the second option: (1)/(n54)(1)/(\sqrt[4]{n^{5}}).

More problems from Multiplication with rational exponents