Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(n^(-2)*n^(-8))^((3)/(10))

n^(3)

root(3)(n)

(1)/(root(3)(n))

(1)/(n^(3))

Select the equivalent expression.\newline(n2n8)310 \left(n^{-2} \cdot n^{-8}\right)^{\frac{3}{10}} \newlinen3 n^{3} \newlinen3 \sqrt[3]{n} \newline1n3 \frac{1}{\sqrt[3]{n}} \newline1n3 \frac{1}{n^{3}}

Full solution

Q. Select the equivalent expression.\newline(n2n8)310 \left(n^{-2} \cdot n^{-8}\right)^{\frac{3}{10}} \newlinen3 n^{3} \newlinen3 \sqrt[3]{n} \newline1n3 \frac{1}{\sqrt[3]{n}} \newline1n3 \frac{1}{n^{3}}
  1. Simplify base with exponents: Simplify the base by adding the exponents.\newlineWhen multiplying two powers with the same base, you add the exponents.\newlinen2×n8=n2+8n^{-2} \times n^{-8} = n^{-2 + -8}\newline=n10= n^{-10}
  2. Apply outer exponent: Apply the outer exponent to the simplified base.\newlineNow we have (n(10))(310)(n^{(-10)})^{(\frac{3}{10})}. When raising a power to a power, you multiply the exponents.\newline(n(10))(310)=n(10(310))(n^{(-10)})^{(\frac{3}{10})} = n^{(-10 \cdot (\frac{3}{10}))}\newline= n(3)n^{(-3)}
  3. Rewrite negative exponent: Rewrite the negative exponent as a reciprocal.\newlineA negative exponent means that the base is on the wrong side of the fraction line, so you flip it to make the exponent positive.\newlinen3=1n3n^{-3} = \frac{1}{n^{3}}

More problems from Multiplication with rational exponents