Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((b^(8))/(b^(4)))^((1)/(2))

(1)/(b^(2))

b^(2)

(1)/(sqrtb)

sqrtb

Select the equivalent expression.\newline(b8b4)12 \left(\frac{b^{8}}{b^{4}}\right)^{\frac{1}{2}} \newline1b2 \frac{1}{b^{2}} \newlineb2 b^{2} \newline1b \frac{1}{\sqrt{b}} \newlineb \sqrt{b}

Full solution

Q. Select the equivalent expression.\newline(b8b4)12 \left(\frac{b^{8}}{b^{4}}\right)^{\frac{1}{2}} \newline1b2 \frac{1}{b^{2}} \newlineb2 b^{2} \newline1b \frac{1}{\sqrt{b}} \newlineb \sqrt{b}
  1. Simplify Exponents: Simplify the expression inside the parentheses using the properties of exponents.\newlineWhen dividing like bases with exponents, subtract the exponents.\newlineb8b4=b84=b4\frac{b^{8}}{b^{4}} = b^{8-4} = b^{4}
  2. Apply Exponent Rule: Apply the exponent outside the parentheses to the result from Step 11.\newline(b4)(12)(b^{4})^{(\frac{1}{2})} means taking the square root of b4b^{4}.\newlineThe square root of b4b^{4} is b4(12)=b2b^{4*(\frac{1}{2})} = b^{2}.
  3. Check Final Result: Check the final result against the given options.\newlineThe equivalent expression is b2b^{2}.

More problems from Multiplication with rational exponents