Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((b^(7))/(4^(5)))^(-3)=?
Choose 1 answer:
(A) 
b^(-21)*4^(-15)
(B) 
(b^(21))/(4^(15))
C 
(4^(15))/(b^(21))

Select the equivalent expression.\newline(b745)3=\left(\frac{b^{7}}{4^{5}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) b21415b^{-21}\cdot4^{-15}\newline(B) b21415\frac{b^{21}}{4^{15}}\newline(C) 415b21\frac{4^{15}}{b^{21}}

Full solution

Q. Select the equivalent expression.\newline(b745)3=\left(\frac{b^{7}}{4^{5}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) b21415b^{-21}\cdot4^{-15}\newline(B) b21415\frac{b^{21}}{4^{15}}\newline(C) 415b21\frac{4^{15}}{b^{21}}
  1. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. Therefore, we can rewrite the expression as the reciprocal of the base raised to the positive exponent.\newline(b745)3=1(b745)3\left(\frac{b^{7}}{4^{5}}\right)^{-3} = \frac{1}{\left(\frac{b^{7}}{4^{5}}\right)^{3}}
  2. Apply power of quotient rule: Apply the power of a quotient rule.\newlineThe power of a quotient rule states that (a/b)n=an/bn(a/b)^n = a^n / b^n. We will apply this rule to the expression inside the reciprocal.\newline1/((b7)/(45))3=1/(b73/453)1/((b^{7})/(4^{5}))^{3} = 1/(b^{7*3} / 4^{5*3})
  3. Multiply exponents: Multiply the exponents.\newlineWe multiply the exponents inside the parentheses by 33, as indicated by the power of a quotient rule.\newline1/(b73/453)=1/(b21/415)1/(b^{7*3} / 4^{5*3}) = 1/(b^{21} / 4^{15})
  4. Rewrite as division of powers: Rewrite the expression as a division of two powers.\newlineWe can rewrite the expression as the division of b21b^{21} by 4154^{15}.\newline1/(b21/415)=415/b211/(b^{21} / 4^{15}) = 4^{15} / b^{21}

More problems from Multiplication with rational exponents