Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((b^(7))/(4^(5)))^(-3)=?
Choose 1 answer:
(A) 
(b^(21))/(4^(15))
(B) 
(4^(15))/(b^(21))
(C) 
b^(-21)*4^(-15)

Select the equivalent expression.\newline(b745)3=\left(\frac{b^{7}}{4^{5}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) b21415\frac{b^{21}}{4^{15}}\newline(B) 415b21\frac{4^{15}}{b^{21}}\newline(C) b21415b^{-21}\cdot 4^{-15}

Full solution

Q. Select the equivalent expression.\newline(b745)3=\left(\frac{b^{7}}{4^{5}}\right)^{-3}=?\newlineChoose 11 answer:\newline(A) b21415\frac{b^{21}}{4^{15}}\newline(B) 415b21\frac{4^{15}}{b^{21}}\newline(C) b21415b^{-21}\cdot 4^{-15}
  1. Understand Exponent Properties: First, we need to understand the properties of exponents. When an expression in the form of (a/b)n(a/b)^n is given, it can be rewritten as an/bna^n / b^n. In this case, our expression is ((b7)/(45))3((b^{7})/(4^{5}))^{-3}. We will apply this property to simplify the expression.
  2. Apply Exponent Rule: Applying the exponent rule, we get:\newline((b7)(3))/((45)(3))((b^{7})^{(-3)})/((4^{5})^{(-3)})\newlineThis means we raise both the numerator and the denominator to the power of 3-3.
  3. Simplify Using Power Rule: Simplify the expression further by applying the power of a power rule, which states that (am)n=amn(a^m)^n = a^{m*n}. Therefore, we have:\newlineb7(3)/45(3)b^{7*(-3)} / 4^{5*(-3)}\newlineThis simplifies to:\newlineb21/415b^{-21} / 4^{-15}
  4. Handle Negative Exponents: Now, we need to understand what it means to have a negative exponent. The rule for negative exponents states that an=1ana^{-n} = \frac{1}{a^n}. Applying this rule to both the numerator and the denominator, we get:\newline1b21415/1\frac{1}{b^{21}} \cdot 4^{15} / 1\newlineThis simplifies to:\newline415b21\frac{4^{15}}{b^{21}}

More problems from Multiplication with rational exponents